
GoF Design Patterns -
with examples using Java and UML2

written by:

Benneth Christiansson (Ed.)
Mattias Forss,
Ivar Hagen,

Kent Hansson,
Johan Jonasson,
Mattias Jonasson,

Fredrik Lott,
Sara Olsson, and
Thomas Rosevall

Copyright
©2008, Authors.
This work is licensed under a Creative Commons
Attribution-ShareAlike 3.0 License. (This license
allows you to redistribute this book in unmodified
form. It allows you to make and distribute modified
versions, as long as you include an attribution to the
original author, clearly describe the modifications
that you have made, and distribute the modified
work under the same license as the original.

 Logica Java Architects Training Crew Design Patterns- Explained

Table of Contents

Chapter 1 Creational Patterns
Factory, Abstract Factory, Builder, Prototype and Singleton

3

Chapter 2 Structural Patterns
Adapter, Bridge, Composite, Decorator, Facade, Flyweight and Proxy

24

Chapter 3 Behavioral Patterns
Chain-of-responsibility, Command, Iterator, Mediator, Memento, Observer,

State and Strategy

50

Foreword
This book is the result of a joint effort of the authors with an equal
contribution from all. The idea to the book originated during the
participation of a Java Architect training program taught at Logica Sverige
AB Karlstad office. During the course the authors identified the lack of a
quick-guide book to the basic GoF1 design patterns. A book that could be
used as a bare bone reference as well as a learning companion for
understanding design patterns. So we divided the workload and together we
created an up-to-date view of the GoF design patterns in a structured and
uniform manner. Illustrating the choosen patterns with examples in Java and
diagrams using UML2 notation. We have also emphasized benefits and
drawbacks for the individual patterns and, where applicable. We also
illustrate real world usage situations where the pattern has successfully been
implemented.

I personally as editor must express my deepest admiration for the dedication
and effort the authors have shown during this process, everyone who ever
have written a book knows what I mean. I am really proud to be the editor of
this very usable book.

--- Benneth Christiansson, Karlstad, autumn 2008 ---

1 Design Patterns Elements of Reusable Elements by Gamma, Helm, Johnson and Vlissides (1995)

2

 Logica Java Architects Training Crew Design Patterns- Explained

Chapter 1 Creational Patterns

“Creational design patterns are design patterns that deal with object
creation mechanisms, trying to create objects in a manner suitable to the
situation. The basic form of object creation could result in design problems
or added complexity to the design. Creational design patterns solve this
problem by somehow controlling this object creation.”2

All the creational patterns define the best possible way in which an object
can be created considering reuse and changeability. These describes the best
way to handle instantiation. Hard coding the actual instantiation is a pitfall
and should be avoided if reuse and changeability are desired. In such
scenarios, we can make use of patterns to give this a more general and
flexible approach.

2 http://en.wikipedia.org/wiki/Creational_pattern

3

 Logica Java Architects Training Crew Design Patterns- Explained

Factory Pattern

Definition
The Factory pattern provides a way to use an instance as a object factory.
The factory can return an instance of one of several possible classes (in a
subclass hierarchy), depending on the data provided to it.

Where to use
•When a class can't anticipate which kind of class of object it must create.

•You want to localize the knowledge of which class gets created.

•When you have classes that is derived from the same subclasses, or they

may in fact be unrelated classes that just share the same interface. Either
way, the methods in these class instances are the same and can be used
interchangeably.
•When you want to insulate the client from the actual type that is being

instantiated.

Benefits
•The client does not need to know every subclass of objects it must create. It

only need one reference to the abstract class/interface and the factory
object.
•The factory encapsulate the creation of objects. This can be useful if the

creation process is very complex.

Drawbacks/consequences
•There is no way to change an implementing class without a recompile.

4

 Logica Java Architects Training Crew Design Patterns- Explained

Structure

Small example
This example shows how two different concrete Products are created using
the ProductFactory. ProductA uses the superclass writeName method.
ProductB implements writeName that reverses the name.

public abstract class Product {
public void writeName(String name) {
 System.out.println("My name is "+name);

 }
}

public class ProductA extends Product { }

public class ProductB extends Product {
 public void writeName(String name) {
 StringBuilder tempName = new StringBuilder().append(name);
 System.out.println("My reversed name is" +

tempName.reverse());
 }
}

public class ProductFactory {
 Product createProduct(String type) {
 if(type.equals("B"))
 return new ProductB();

 else
 return new ProductA();

 }
}

5

Click here to download full PDF material

https://www.computer-pdf.com/design-analysis/64-tutorial-course-java-and-uml2-tutorial.html

