Databases course book

Version 4.1 (8 October 2013)

Free University of Bolzano Bozen - Paolo Coletti

Introduction

This book contains the relational databases and Access course’s lessons held at the Free University of
Bolzano Bozen. The book is divided into levels, the level is indicated between parenthesis after each

section’s title:

e students of Information Systems and Data Management 3 credits course use level 1;

e students of Information Systems and Data Management 5 credits course use levels 1, 2 and 3;
e students of Computer Science and Information Processing course use levels 1, 2 and 3;

e students of Advanced Data Analysis course use levels 2 and 5.

This book refers to Microsoft Access 2010, with referrals to 2007 and 2003 in footnotes, to MySQL
Community Server version 5.5 and to HeidiSQL version 7.0.0.

This book is in continuous development, please take a look at its version number, which marks important

changes.

Disclaimers

This book is designed for novice database designers. It contains simplifications of theory and many

technical details are purposely omitted.

Table of Contents

INTRODUCTIONcociiiiiiiiniiinnisnsnnssnsssnsssnnnnes
TABLE OF CONTENTS.....cccovvirvnnnnnnnnnnnn,
1. RELATIONAL DATABASES (LEVEL 2)c....

1.1. DATABASE IN NORMAL FORMcoeeeeeeieieieieienene
1.2. RELATIONS ...vvvveeeeeeieerereeeeeeeseirereeeeeesennneneenas
1.3. ONE-TO-MANY RELATION ..evvvverreeereerereeesessrannns
1.4. ONE-TO-ONE RELATION ...vvvvvvvevrreneneneneerenerenennns

1.5. MANY-TO-MANY RELATIONcuvvrrereeeernnrnneeennn.
1.6. FOREIGN KEY WITH SEVERAL RELATIONS
1.7. REFERENTIAL INTEGRITY ceeeeeeeeeeseseseseneeenenn 10
1.8. TEMPORAL VERSUS STATIC DATABASEvvvvvvvunens 11
1.9. NON-RELATIONAL STRUCTURES ...ceeeeeeeeeeeereenens 11
1.10. ENTITY-RELATIONSHIP MODEL (LEVEL9) 12
2. MICROSOFT ACCESS (LEVEL 1)....ccceeuueeeecerrnennn 14
2.1. BASIC OPERATIONSeevveereeeeeieieeeeeeeeeeeeeeees 14
2.2. TABLES (LEVEL 1) ceeeiiieeiiiee et 15
2.3. FORMS (LEVEL 3) vrveeeeeeeeecrieeeeeieeecneeeeeeveeen 18

2.4, QUERIES (LEVEL 1) ceeveviieieeniieeiee e 19

2.5. REPORTS (LEVEL 3) cuvveeeerreeeeenreeeeeeeeeeeeveeens 22

MYSQL (LEVEL 5)....cooriireeeennncccrreeeennnnnnseesneeens 23
3.1. HEIDISQL ..vvvveeeiieiiieeee et eeeeeee e 23
3.2. INSTALLING MYSQL SERVERuuuunnnnnnnnninnnnnnnns 25

SQL LANGUAGE FOR MYSQL (LEVEL 5)............ 29
4.1. BASIC OPERATIONS ...uvuvieiiiininniinininnneanannnnnnnens 29
4.2. SIMPLE SELECTION QUERIES ..cvvvevererererereeeneeeenns 29
4.3. INNER JOINS ©vvveeeeeererireeeeeeseinrneeeeessssnvnnneeeens 31
4.4. SUMMARY QUERIES...ccceeereerrreeeeeeernereneeesennnns 33
4.5, MODIFYING RECORDSuuuuuunnnnnnnnnnnnnnnnnnnnnnnnnns 34
4.6. EXTERNAL DATA .uueieieeeiiiiiieeeeeeeeeennieeeeeeeeeees 34
4.7. TABLES «eueuuueuunueunnnunnnaeanaranaenrnrnrsnnnnsesennnnnenens 35

DESIGNING A DATABASE (LEVEL 2)................. 38
5.1. PAPER DIAGRAM .. .ueiiieeeiieiieeeeeeeeeennieeeeeaaennes 38
5.2. BUILDING THE TABLES ...evvvvvieeeeeeereennieeeeeeeeenns 39
5.3. INSERTING DATA ..uuuuuiiennnnnnnnnnnnnnnnnnnnnnnnnnnnnnnens 41

TECHNICAL DOCUMENTATION (LEVEL9) 42
6.1. MYFARM EXAMPLEvvvveeeeiernrieeeeeseeenneneeeens 42

Paolo Coletti

1. Relational databases (level 2)

Databases course book

This chapter presents the basic ideas and motivations which lie behind the concept of relational database.
Readers with previous experience in building schemas for relational databases can skip this part.

A relational database is defined as a collection of tables connected via relations. It is always a good idea to

have this table organized in a structured was that is called normal form.

1.1. Database in Normal Form

The easiest form of database, which can be handled even by Microsoft Excel, is a single table. To be a
database in normal form, the table must satisfy some requisites:

the first line contains the headers of the columns, which univocally define the content of the
column. For example:

Student number | Name | Surname | Telephone
2345 Mary Smith | 0471 234567 |

each column contains only what is indicated in its header. For example, in a column with header
“telephone number” we may not put two numbers or indication on the preferred calling time, such
as in the second row of this table:

Student number | Name ‘ Surname ‘ Telephone

2345

Mary

Smith

0471 234567

2348

John

McFlurry

0471 234567 or 337 8765432

each row refers to a single object. For example, there may not be a row with information on several
objects or on a group of objects, such as in the second row of this table:

Student number mm Degree course

2345 Mary Smith Economics and Management
Starting with 5 Logistics and Production Engineering

rows are independent, i.e. no cell has references to other rows, such as in the second row of this

table:
2345 Mary Smith
2376 John Smith is the brother of 2345

rows and columns are disordered, i.e. their order is not important. For example, these four tables
are the same one:

Student number ’ Name ‘ Surname Student number ’ Name ‘ Surname

2345

Mary

Smith

2376

John

McFlurry

2376

John

McFlurry

2345

Mary

Smith

Mary

2345

Name | Student number ‘ Surname

Smith

McFlurry

2376

Surname ’ Student number | Name

John

John

2376

McFlurry

Smith

2345

Mary

Page 2 of 44

Version 4.1 (08/10/2013)

Databases course book Paolo Coletti

6. cells do not contain values which can be directly calculated from cells of the same row, such as in
the last column of this table:

Student number ‘ Name ‘ Surname | Tax 1% semester | Tax 2" semester | Total tax
2345 Mary | Smith 550 € 430 € 980 €

2376 John | McFlurry 450 € 0€ 450 €

Database rows are called records and database columns are called fields.

Single table databases can be easily handled by many programs and by human beings, even when the table
is very long or with many fields. There are however situations in which a single table is not an efficient way
to handle the information.

1.1.1. Primary key

Each table should have a primary key, which means a field whose value is different for every record. Many
times primary key has a natural candidate, as for example student number for a students’ table, tax code
for a citizens table, telephone number for a telephones table. Other times a good primary key candidate is
difficult to detect, for example in a cars’ table the car name is not a primary key since there are different
series and different motor types of the same car. In these cases it is possible to add an extra field, called ID
or surrogate key, with a progressive number, to be used as primary key. In many database programs this
progressive number is handled directly by the program itself.

It is also possible to define as primary key several fields together, for example in a people table the first
name together with the last name, together with place and date of birth form a unique sequence for every
person. In this case the primary key is also called composite key or compound key. On some database
management programs however handling a composite key can create problems and therefore it is a better
idea to use, in this case, an ID.

1.2. Relations

1.2.1. Information redundancy

In some situations trying to put the information we need in a single table database causes a duplication of
identical data which can be called information redundancy. For example, if we add to our students’ table
the information on who is the reference secretary for each student, together with other secretary’s
information such as office telephone number, office room and timetables, we get this table:

Student number | Name | Surname | Secretary | Time

2345 Mary Smith Anne Boyce | 0471222222 | C340 | 14-18
2376 John | McFlurry | Jessy Codd | 0471223334 | C343 | 9-11
2382 Elena Burger | Jessy Codd | 0471223334 | C343 | 9-11
2391 Sarah Crusa Anne Boyce | 0471222222 | C340 | 14-18
2393 Bob Fochs Jessy Codd | 0471223334 | C343 | 9-11

Information redundancy is not a problem by itself, but:

e storing several times the same information is a waste of computer space (hard disk and memory),
which for a very large table, has a bad impact on the size of the file and on the speed of every search
or sorting operation;

e whenever we need to update a repeated information (e.g. the secretary changes office), we need to
do a lot of changes;

e manually inserting the same information several times can lead to typing (or copying&pasting)
mistakes, which decrease the quality of the database.

Version 4.1 (08/10/2013) Page 3 of 44

Paolo Coletti Databases course book

In order to avoid this situation, it is a common procedure to split the table into two distinct tables, one for
the students and another one for the secretaries. To each secretary we assign a unique code and to each
student we indicate the secretary’s code.

Students
Student number | Name | Surname | Secretary
2345 Mary Smith 1
2376 John | McFlurry 2
2382 Elena Burger 2
2391 Sarah Crusa 1
2393 Bob Fochs 2

Secretaries

Secretary code | Name | Surname | Telephone | Office | Time
1 Anne Boyce | 0471222222 | C340 | 14-18
2 Jessy Codd 0471223334 | C343 | 9-11

In this way the information on each secretary is written and stored only once and can be updated very
easily. The price for this is that every time we need to know who is a student’s secretary we have to look at
its secretary code and find the corresponding code in the Secretaries table: this can be a long and
frustrating procedure for a human being when the Secretaries table has many records, but is very fast task
for a computer program which is designed to quickly search through tables.

1.2.2. Empty fields

Another typical problem which arises with single table databases is the case of many empty fields. For
example, if we want to build an address book with the telephone numbers of all the people, we will have
somebody with no telephone numbers, many people with a few telephone numbers, and some people with
a lot of telephone numbers. Moreover, we must also take into consideration that new numbers will
probably be added in the future to anybody.

If we reserve a field for every telephone, the table looks like this:

Name | Surname‘ Phonel Phone2 Phone3 | Phone4 ‘ Phone5 ‘ Phoneb ‘ Phone?7
Mary Smith 0412345

John | McFlurry | 0412375 3396754

Elena Burger 0412976 | 3397654 | 0436754 | 3376547 | 0487652 | 3387655 | 0463456
Sarah Crusa 0418765 0412345

Bob Fochs 0346789 | 0765439 | 3376543

As it is clear, if we reserve several fields for the telephone numbers, a lot of cells are empty. The problems
of empty cells are:
e an empty cell is a waste of computer space;
o there is a fixed limit of fields which may be used. If a record needs another field (for example, Elena

Burger gets another telephone number) the entire structure of the table must be changed;
e since all these fields contain the same type of information, it is difficult to search whether an

information is present since it must be looked for in every field, including the cells which are empty.

In order to avoid this situation, we again split the table into two distinct tables, one for the people and
another one for their telephone numbers. This time, however, we assign a unique code to each person and
we build the second table with combinations of person-telephone.

Page 4 of 44 Version 4.1 (08/10/2013)

Databases course book Paolo Coletti

Telephones

1 Mary | Smith 0412345
John | McFlurry 0412375

Elena | Burger 3396754
Sarah Crusa 0412976

Bob Fochs 3397654
0436754
3376547
0487652
3387655
0463456
0418765
0412345
0346789
0765439
3376543

wI|N

o

S,]

NN IRIWWIWWIWWIWININ|(F

Even though it seems strange, each person’s code appears several times in the Telephones table. This is
correct, since Telephones table uses the exact amount of records to avoid having empty cells: people
appear as many times as many telephones they have, and people with no telephone do not appear at all.
The drawback is that every time we want to get to know telephone numbers we have to go through the
entire Telephones table searching for the person’s code, but again this procedure is very fast for an
appropriate computer program.

1.2.3. Foreign key

When a field, which is not the primary key, is used in a relation with another table this field is called foreign
key. This field is important for the database management program, such as Access, when it has to check
referential integrity (see section 1.6).

For example, in the previous examples Owner is a foreign key for Telephones table and Secretary is a
foreign key for Students table.

1.3. One-to-many relation

A relation is a connection between a field of table A (which becomes a foreign key) and the primary key of
table B: on the B side the relation is “1”, meaning that for each record of table A there is one and only one
corresponding record of table B, while on the A side the relation is “many” (indicated with the
mathematical symbol o) meaning that for each record of table B there can be none, one or more
corresponding records in table A.

For the example of section 1.2.1, the tables are indicated in this way, meaning that for each student there is
exactly one secretary and for each secretary there are many students. This relation is called many-to-one
relation.

Version 4.1 (08/10/2013) Page 5 of 44

Click here to download full PDF material

https://www.computer-pdf.com/database/145-tutorial-databases-course-book-course.html

