
C# Programming Tutorial Davide Vitelaru

C# Programming Tutorial

Lesson 1: Introduction to Programming

About this tutorial

This tutorial will teach you the basics of programming and the basics of the C# programming language.

If you are an absolute beginner this tutorial is suited for you.

If you already know one or more programming languages, you might find it a bit boring and skip to the

next lesson.

To follow this tutorial you need to have Visual C# Express Edition 2008 or 2010 installed on your

computer. These applications are free to download and install.

The best way to learn this is by practicing. Make sure you write all the examples yourself and test them,

and that you do the tasks that I have put at the end. The tasks at the end will probably help you the

most to get used to C#.

This tutorial has been entirely created by Davide Vitelaru (http://davidevitelaru.com/).

Note: You can use the table of contents at page 20 to get around the document quickly

Software required: You must know: You will learn:

 Visual C# Express

Edition 2008/2010

 What programming is

 What a programming

language is

 Some Basics

 Variables

 Variable Operations

 Decisions

 Loops

http://www.microsoft.com/express/Downloads/#2010-Visual-CS
http://davidevitelaru.com/

C# Programming Tutorial Davide Vitelaru

Some Basics

Throughout this tutorial I will refer to Visual C# Express 2008/2010 as the IDE (Integrated Development

Editor).

To start with, open your IDE and create a new project (File >> New >> Project or Ctrl + Shift + N). Select

the Visual C# Console Application template from the window that appears and click OK:

Once you created your project, you will see this:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Lesson_1
{
 class Program
 {
 static void Main(string[] args)
 {

 }

 }

C# Programming Tutorial Davide Vitelaru

}

I kŶoǁ it looks sĐaƌǇ, ďut it’s Ŷot that ĐoŵpliĐated. You oŶlǇ haǀe to ǁoƌƌǇ aďout this section:

 static void Main(string[] args)
 {

 }

This is the exact place where you will write your source code, to be exact, between the braces following

static void Main(string[] args).

At this poiŶt, Ǉouƌ appliĐatioŶ ǁoŶ’t do aŶǇthing. To start you application, press F5. You will see a black

windows appearing and closing immediately.

It Đloses iŵŵediatelǇ ďeĐause it does eǆaĐtlǇ ǁhat Ǉou told it to do: ŶothiŶg. Let’s ͞tell͟ it to opeŶ aŶd
wait for a keystroke to close.

Write the following line between the braces of static void Main(string[] args):

 Console.ReadKey();

Now, press F5 to run your application. You will end up with a black window awaiting you to press any

key so it closes.

Let’s ŵake it eǀeŶ ŵoƌe fuŶ, ŵake Ǉour code look like this:

 static void Main(string[] args)
 {
 Console.WriteLine("Hello World!");
 Console.ReadKey();
 }

Again, press F5 to run your application. This tiŵe the appliĐatioŶ ǁill displaǇ ͞Hello Woƌld͟ aŶd theŶ it
will wait for you to press a key. If Ǉou get aŶ eƌƌoƌ, ŵake suƌe Ǉou tǇped eǀeƌǇthiŶg ĐoƌƌeĐtlǇ. Also, doŶ’t
forget the semicolons at the end; they are very important (and annoying for beginners that keep

forgetting them).

A statement can be used multiple times. Do the following:

 static void Main(string[] args)
 {
 Console.WriteLine("Press a key to continue...");
 Console.ReadKey();
 Console.WriteLine("Now press another key...");

 Console.ReadKey();

C# Programming Tutorial Davide Vitelaru

 Console.WriteLine("Press again to exit...");
 Console.ReadKey();
 }

Just change the text between the quotation marks in the Console.WriteLine("") statement to

change the displayed message.

What’s the catch with the black window?

The ďlaĐk ǁiŶdoǁ that Ǉou aƌe ĐuƌƌeŶtlǇ ǁoƌkiŶg at is Đalled a ĐoŶsole ǁiŶdoǁ. BaĐk iŶ the ϭϵϴϬ’s
Đoŵputeƌs didŶ’t haǀe taskďaƌs aŶd ǁiŶdoǁs like theǇ do Ŷoǁ, the oŶlǇ had this teǆt-based interface.

Your application has a text-based interface at the moment.

CƌeatiŶg aŶ appliĐatioŶ ǁith a useƌ iŶteƌfaĐe ;ǁiŶdoǁs, ďuttoŶs, teǆt ďoǆes, etĐ…Ϳ is usuallǇ haƌdeƌ, ďut
thaŶks to MiĐƌosoft’s .NET fƌaŵeǁoƌk ǁe ĐaŶ Đƌeate oŶe iŶ a feǁ easǇ steps; Ǉet, that is Ŷot the poiŶt of
this lesson.

This lesson is supposed to show you the basics, and once you finish it you will be able to move on to

further lessons and create useful and good-looking applications.

C# Programming Tutorial Davide Vitelaru

Data manipulation

A program that displays messages and waits for keystrokes won’t ďe of use to aŶǇoŶe, so let’s ŵake it
do soŵethiŶg useful. Let’s ŵake it add tǁo Ŷuŵďeƌs.

Variables

Variables are like boxes, you can put things in them. In our case, we will use them to store values.

Variables are of different types, depending on the type it can store different values, for example and

integer variable can hold a number, while a string can hold characters ;eǆ. ͞hello ŵǇ Ŷaŵe is johŶ͟ – 21

characters, spaces included).

To staƌt ǁith, let’s use ǀaƌiaďles displaǇ iŶfoƌŵatioŶ:

 static void Main(string[] args)
 {
 string name;

 name = "John";
 Console.WriteLine(name);
 }

Press F5, run your application and see the result. If you receive an error, make sure you typed everything

correctly.

How does it work?

To use a variable, we must first create it. To Đƌeate it ;a ďetteƌ teƌŵ ǁould ďe to ͞deĐlaƌe͟ itͿ, you must

type the variable type, followed by the name you want the variable to have:

 string variable;
 int another_variable;

At this point, both of these variables are empty. To assign a value to a variable, type the name of the

variable, equal and the value you want it to hold. If it is a string, never forget to type the value between

quotation marks:

 variable = "hello there";
 another_variable = 22;

Make sure you assign the correct type of value to the variable, or you will receive an error; In this case

variable is a string so it can hold a string value, and is another_variable an integer so it

can hold a number. You ĐaŶ Ŷaŵe the ǀaƌiaďles hoǁeǀeƌ Ǉou like as loŶg as Ǉou doŶ’t use ƌeseƌǀed
words (like int, Ǉou ĐaŶ’t do int int ďeĐause it ǁould ƌetuƌŶ aŶ eƌƌoƌͿ, aŶd the Ŷaŵe doesŶ’t ĐoŶtaiŶ
soŵe paƌtiĐulaƌ sǇŵďols, aŶd the Ŷaŵe doesŶ’t staƌt ǁith a number.

Let’s make the computer ask for our name, and then greet us:

Click here to download full PDF material

https://www.computer-pdf.com/programming/csharp/149-tutorial-csharp-programming-beginner-tutorial.html

