

C h a p t e r

1

A Crash Course
from C++ to Java

�

“Hello, World” in Java

�

Documentation Comments

�

Primitive Types

�

Control Flow Statements

�

Object References

�

Parameter Passing

�

Packages

�

Basic Exception Handling

�

Array Lists and Arrays

�

Strings

�

Reading Input

�

Static Fields and Methods

�

Programming Style

The purpose of this chapter is to teach you the elements of Java—or to

give you an opportunity to review them—assuming that you know an

object-oriented programming language. In particular, you should be

familiar with the concepts of classes and objects. If you know C++ and

C H A P T E R T O P I C S

2

CHAPTER 1

A Crash Course from C++ to Java

understand classes, member functions, and constructors, then you will find
that it is easy to make the switch to Java.

Classes are the building blocks of Java programs. Let’s start our crash course by looking
at a simple but typical class:

Greeter.java

1

public class Greeter

2

{

3

 public Greeter(String aName)

4

 {

5

 name = aName;

6

 }

7

8

 public String sayHello()

9

 {

10

 return "Hello, " + name + "!";

11

 }

12

13

 private String name;

14

}

This class has three features:

�

A

constructor

Greeter(String aName)

 that is used to construct new objects of this
class.

�

A

method

sayHello()

 that you can apply to objects of this class. (Java uses the
term “method” for a function defined in a class.)

�

A

field

name

 that is present in every object of this class

Each feature is tagged as

public

 or

private

. Implementation details (such as the

name

field) are private. Features that are intended for the class user (such as the constructor
and

sayHello

method) are public. The class itself is declared as public as well. You will
see the reason in the section on packages.

To construct an object, you use the

new

 operator, followed by a call to the constructor.

new Greeter("World")

The

new

 operator returns the constructed object, or, more precisely, a reference to that
object—we will discuss that distinction in detail in the section on object references.

You can invoke a method on that object. The call

new Greeter("World").sayHello()

returns the string

"Hello, World!"

, the concatenation of the strings

"Hello, "

,

name,

and

"!"

.

More commonly, you store the value that the

new

 operator returns in an object variable

Greeter worldGreeter = new Greeter("World");

1.1 “Hello, World!” in Java

1.1

“Hello, World!” in Java

3

Then you invoke a method as

String greeting = worldGreeter.sayHello();

Now that you have seen how to define a class, let’s build our first Java program, the tradi-
tional program that displays the words “Hello, World!” on the screen.

We will define a second class,

GreeterTest

, to produce the output.

GreeterTest.java

1

public class GreeterTest

2

{

3

 public static void main(String[] args)

4

 {

5

 Greeter worldGreeter = new Greeter("World");

6

 String greeting = worldGreeter.sayHello();

7

 System.out.println(greeting);

8

 }

9

}

This class has a

main

 method, which is required to start a Java application. The

main

method is

static

, which means that it doesn’t operate on an object. After all, when the
application first starts, there aren’t any objects yet. It is the job of the

main

 method to
construct the objects that are needed to run the program.

The

args

 parameter of the

main

 method holds the

command line arguments.

 We will dis-
cuss it in the section on arrays.

You have already seen the first two statements inside the

main

 method. They construct a

Greeter

 object, store it in an object variable, invoke the

sayHello

 method and capture
the result in a string variable. The final statement uses the

println

 method of the

Sys-

tem.out object to print the message and a newline to the standard output stream.

To build and execute the program, put the Greeter class inside a file Greeter.java and
the GreeterTest class inside a separate file GreeterTest.java. The directions for compil-
ing and running the program depend on your development environment.

The Java Software Development Kit (SDK) from Sun Microsystems is a set of com-
mand-line programs for compiling, running, and documenting Java programs. Versions
for several platforms are available at http://java.sun.com/j2se. If you use the Java
SDK, then follow these instructions:

1. Create a new directory of your choice to hold the program files.

2. Use a text editor of your choice to prepare the files Greeter.java and
GreeterTest.java. Place them inside the directory you just created.

3. Open a shell window.

4. Use the cd command to change to the directory you just created

5. Run the compiler with the command

javac GreeterTest.java

If the Java compiler is not on the search path, then you need to use the full path
(such as /usr/local/j2sdk1.4/bin/javac or c:\j2sdk1.4\bin\javac) instead of
just javac. Note that the Greeter.java file is automatically compiled as well since

4 CHAPTER 1 A Crash Course from C++ to Java

the GreeterTest class requires the Greeter class. If any compilation errors are
reported, then make a note of the file and line numbers and fix them.

6. Have a look at the files in the current directory. Verify that the compiler has gen-
erated two class files, Greeter.class and GreeterTest.class.

7. Start the Java interpreter with the command

java GreeterTest

Now you will see a message “Hello, World!” in the shell window (see Figure 1).

The structure of this program is typical for a Java application. The program consists of a
collection of classes. One class has a main method. You run the program by launching the
Java interpreter with the name of the class whose main method contains the instructions
for starting the program activities.

The BlueJ development environment, developed at Monash University, lets you test
classes without having to write a new program for every test. BlueJ supplies an interactive
environment for constructing objects and invoking methods on the objects. You can
download BlueJ from http://www.bluej.org.

With BlueJ, you don’t need a GreeterTest class to test the Greeter class. Instead, just
follow these steps.

1. Select “Project -> New…” from the menu, point the file dialog to a directory of
your choice and type in the name of the subdirectory that should hold your
classes. This must be the name of a new directory. BlueJ will create it.

2. Click on the “New Class…” button and type in the Greeter class.

3. Click on the “Compile” button to compile the class. Click on the “Close” button.

4. The class is symbolized as a rectangle. Right-click on the class rectangle, and
select “new Greeter(aName)” to construct a new object. Call the object

Figure 1

Running the “Hello, World!” Program in a Shell Window

1.2 Documentation Comments 5

worldGreeter and supply the constructor parameter "Hello" (including the quota-
tion marks).

5. The object appears in the object workbench. Right-click on the object rectangle
and select “String sayHello()” to execute the sayHello method.

6. A dialog box appears to display the result (see Figure 2).

As you can see, BlueJ lets you think about objects and classes without fussing with pub-
lic static void main.

Java has a standard form for documenting comments that describe methods and classes.
The Java SDK contains a tool, called javadoc, that automatically generates a neat set of
HTML pages that document your classes.

Documentation comments are delimited by /** and */. Both class and method com-
ments start with freeform text. The javadoc utility copies the first sentence of each com-
ment to a summary table. Therefore, it is best to write that first sentence with some care.
It should start with an uppercase letter and end with a period. It does not have to be a
grammatically complete sentence, but it should be meaningful when it is pulled out of
the comment and displayed in a summary.

Figure 2

Testing a Class with BlueJ

1.2 Documentation Comments

Click here to download full PDF material

https://www.computer-pdf.com/programming/163-tutorial-a-crash-course-from-cpp-to-java.html

