
A Crash Course

in C++

The goal of this chapter is to cover briefly the most important parts of C++ so that you have a base
of knowledge before embarking on the rest of the book. This chapter is not a comprehensive lesson
in the C++ programming language. The very basic points (like what a program is and the differ-
ence between = and ==) are not covered. The very esoteric points (remember what a union is? how
about the volatile keyword?) are also omitted. Certain parts of the C language that are less rele-
vant in C++ are also left out, as are parts of C++ that get in-depth coverage in later chapters.

This chapter aims to cover the parts of C++ that programmers encounter on a daily basis. If you’ve
been away from C++ for a while and you’ve forgotten the syntax for a for loop, you’ll find that in
this chapter. If you’re fairly new to C++ and you don’t understand what a reference variable is,
you’ll learn that here as well.

If you already have significant experience with C++, skim this chapter to make sure that there
aren’t any fundamental parts of the language on which you need to brush up. If you’re new to
C++, take the time to read this chapter carefully and make sure that you understand the examples.
If you need additional introductory information, consult the titles listed in Appendix B.

The Basics of C++

The C++ language is often viewed as a “better C” or a “superset of C.” Many of the annoyances
or rough edges of the C language were addressed when C++ was designed. Because C++ is based
on C, much of the syntax you’ll see in this section will look familiar to you if are an experienced
C programmer. The two languages certainly have their differences, though. As evidence, The C++
Programming Language by C++ creator Bjarne Stroustrup weighs in at 911 pages, while Kernighan
and Ritchie’s The C Programming Language is a scant 274 pages. So if you’re a C programmer, be on
the lookout for new or unfamiliar syntax!

C
O

P
Y
R
IG

H
T
E
D

 M
A

T
E
R
IA

L

The Obligatory Hello, World
In all its glory, the following code is the simplest C++ program you’re likely to encounter.

// helloworld.cpp

#include <iostream>

int main(int argc, char** argv)

{

std::cout << “Hello, World!” << std::endl;

return 0;

}

This code, as you might expect, prints the message Hello, World! on the screen. It is a simple program
and unlikely to win any awards, but it does exhibit several important concepts about the format of a
C++ program.

Comments

The first line of the program is a comment, a message that exists for the programmer only and is ignored
by the compiler. In C++, there are two ways to delineate a comment. In the preceding example, two
slashes indicate that whatever follows on that line is a comment.

// helloworld.cpp

The same behavior (this is to say, none) would be achieved by using a C-style comment, which is also
valid in C++. C-style comments start with /* and end with */. In this fashion, C-style comments are
capable of spanning multiple lines. The code below shows a C-style comment in action (or, more appro-
priately, inaction).

/* this is a multiline

* C-style comment. The

* compiler will ignore

* it.

*/

Comments are covered in detail in Chapter 7.

Preprocessor Directives

Building a C++ program is a three-step process. First, the code is run through a preprocessor, which recog-
nizes metainformation about the code. Next, the code is compiled, or translated into machine-readable
object files. Finally, the individual object files are linked together into a single application. Directives that
are aimed at the preprocessor start with the # character, as in the line #include <iostream> in the
previous example. In this case, an include directive tells the preprocessor to take everything from the
iostream header file and make it available to the current file. The most common use of header files is to
declare functions that will be defined elsewhere. Remember, a declaration tells the compiler how a func-
tion is called. A definition contains the actual code for the function. The iostream header declares the
input and output mechanisms provided by C++. If the program did not include it, it would be unable to
perform its only task of outputting text.

2

Chapter 1

The table below shows some of the most common preprocessor directives.

Preprocessor Directive Functionality Common Uses

#include [file] The specified file is inserted into Almost always used to include
the code at the location of the header files so that code can
directive. make use of functionality that

is defined elsewhere.

#define [key] [value] Every occurrence of the specified Often used in C to define a
key is replaced with the specified constant value or a macro. C++
value. provides a better mechanism

for constants. Macros are often
dangerous so #define is rarely
used in C++. See Chapter 12
for details.

#ifdef [key] Code within the ifdef Used most frequently to protect
#ifndef [key] (“if defined”) or ifndef against circular includes. Each
#endif (“if not defined”) blocks are included file defines a value

conditionally included or initially and surrounds the rest
omitted based on whether of its code with a #ifndef and
the specified value has been #endif so that it won’t be
defined with #define. included multiple times.

#pragma Varies from compiler to compiler. Because usage of #pragma is not
Often allows the programmer to standard across compilers, we
display a warning or error if the advocate not using it.
directive is reached during
preprocessing.

The main function

main() is, of course, where the program starts. An int is returned from main(), indicating the result
status of the program. main() takes two parameters: argc gives the number of arguments passed to the
program, and argv contains those arguments. Note that the first argument is always the name of the
program itself.

I/O Streams

If you’re new to C++ and coming from a C background, you’re probably wondering what std::cout is
and what has been done with trusty old printf(). While printf() can still be used in C++, a much
better input/output facility is provided by the streams library.

In C, included files usually end in .h, such as <stdio.h>. In C++, the suffix is omit-
ted for standard library headers, such as <iostream>. Your favorite standard head-
ers from C still exist in C++, but with new names. For example, you can access the
functionality from <stdio.h> by including <cstdio>.

3

A Crash Course in C++

I/O streams are covered in depth in Chapter 14, but the basics of output are very simple. Think of an
output stream as a laundry chute for data. Anything you toss into it will be output appropriately.
std::cout is the chute corresponding to the user console, or standard out. There are other chutes,
including std::cerr, which outputs to the error console. The << operator tosses data down the chute.
In the preceding example, a quoted string of text is sent to standard out. Output streams allow multiple
data of varying types to be sent down the stream sequentially on a single line of code. The following
code outputs text, followed by a number, followed by more text.

std::cout << “There are “ << 219 << “ ways I love you.” << std::endl;

std::endl represents an end of line character. When the output stream encounters std::endl, it will
output everything that has been sent down the chute so far and move to the next line. An alternate way
of representing the end of a line is by using the ‘\n’ character. The \n character is an escape character,
which refers to a new-line character. Escape characters can be used within any quoted string of text. The
list below shows the most common escape characters.

❑ \n new line

❑ \r carriage return

❑ \t tab

❑ \\ the backslash character

❑ \” quotation mark

Streams can also be used to accept input from the user. The simplest way to do this is to use the
>> operator with an input stream. The std::cin input stream accepts keyboard input from the user.
User input can be tricky because you can never know what kind of data the user will enter. See
Chapter 14 for a full explanation of how to use input streams.

Namespaces
Namespaces address the problem of naming conflicts between different pieces of code. For example, you
might be writing some code that has a function called foo(). One day, you decide to start using a third-
party library, which also has a foo() function. The compiler has no way of knowing which version of
foo() you are referring to within your code. You can’t change the library’s function name, and it would
be a big pain to change your own.

Namespaces come to the rescue in such scenarios because you can define the context in which names are
defined. To place code in a namespace, simply enclose it within a namespace block:

// namespaces.h

namespace mycode {

void foo();

}

4

Chapter 1

The implementation of a method or function can also be handled in a namespace:

// namespaces.cpp

#include <iostream>

#include “namespaces.h”

namespace mycode {

void foo() {

std::cout << “foo() called in the mycode namespace” << std::endl;

}

}

By placing your version of foo() in the namespace “mycode,” it is isolated from the foo() function
provided by the third-party library. To call the namespace-enabled version of foo(), prepend the
namespace onto the function name as follows.

mycode::foo(); // Calls the “foo” function in the “mycode” namespace

Any code that falls within a “mycode” namespace block can call other code within the same namespace
without explicitly prepending the namespace. This implicit namespace is useful in making the code
more precise and readable. You can also avoid prepending of namespaces with the using directive. This
directive tells the compiler that the subsequent code is making use of names in the specified namespace.
The namespace is thus implied for the code that follows:

// usingnamespaces.cpp

#include “namespaces.h”

using namespace mycode;

int main(int argc, char** argv)

{

foo(); // Implies mycode::foo();

}

A single source file can contain multiple using directives, but beware of overusing this shortcut. In the
extreme case, if you declare that you’re using every namespace known to humanity, you’re effectively
eliminating namespaces entirely! Name conflicts will again result if you are using two namespaces that
contain the same names. It is also important to know in which namespace your code is operating so that
you don’t end up accidentally calling the wrong version of a function.

You’ve seen the namespace syntax before — we used it in the Hello, World program. cout and endl are
actually names defined in the std namespace. We could have rewritten Hello, World with the using
directive as shown here:

5

A Crash Course in C++

Click here to download full PDF material

https://www.computer-pdf.com/programming/c-cpp/166-tutorial-a-crash-course-in-cpp-language.html

