

1

Interfacing C/C++ and Python with SWIG

David M. Beazley

Department of Computer Science
University of Chicago

Chicago, Illinois 60615

beazley@cs.uchicago.edu

SWIG Tutorial 7th International Python Conference

2

SWIG Tutorial 7th International Python Conference

Prerequisites

C/C++ programming

• You’ve written a C program.

• You’ve written a Makefile.

• You know how to use the compiler and linker.

Python programming

• You’ve heard of Python.

• You’ve hopefully written a few Python programs.

Optional, but useful

• Some knowledge of the Python C API.

• C++ programming experience.

Intended Audience

• C/C++ application developers interested in making better programs

• Developers who are adding Python to “legacy” C/C++ code.

• Systems integration (Python as a glue language).

Notes

3

SWIG Tutorial 7th International Python Conference

C/C++ Programming

The good

• High performance.

• Low-level systems programming.

• Available everywhere and reasonably well standardized

The bad

• The compile/debug/nap development cycle.

• Difficulty of extending and modifying.

• Non-interactive.

The ugly

• Writing user-interfaces.

• Writing graphical user-interfaces (worse).

• High level programming.

• Systems integration (gluing components together).

Notes

4

SWIG Tutorial 7th International Python Conference

What Python Brings to C/C++

An interpreted high-level programming environment

• Flexibility.

• Interactivity.

• Scripting.

• Debugging.

• Testing

• Rapid prototyping.

Component gluing

• A common interface can be provided to different C/C++ libraries.

• C/C++ libraries become Python modules.

• Dynamic loading (use only what you need when you need it).

The best of both worlds

• Performance of C

• The power of Python.

Notes

5

SWIG Tutorial 7th International Python Conference

Points to Ponder

“Surely the most powerful stroke for software productivity, reliability, and simplicity
has been the progressive use of high-level languages for programming. Most
observers credit that development with at least a factor of 5 in productivity, and
with concomitant gains in reliability, simplicity, and comprehensibility.”

Frederick Brooks

“The best performance improvement is the transition from the nonworking state to
the working state.”

--- John Ousterhout

“Less than 10% of the code has to do with the ostensible purpose of the system;
the rest deals with input-output, data validation, data structure maintenance, and
other housekeeping”

--- Mary Shaw

“Don’t keep doing what doesn’t work”

--- Anonymous

Notes

Click here to download full PDF material

https://www.computer-pdf.com/programming/171-tutorial-interfacing-c-cpp-and-python-with-swig.html

