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Prerequisites

C/C++ programming

* You’ve written a C program.
* You’ve written a Makefile.
* You know how to use the compiler and linker.

Python programming
* You've heard of Python.
* You’ve hopefully written a few Python programs.

Optional, but useful

» Some knowledge of the Python C API.
« C++ programming experience.

Intended Audience
» C/C++ application developers interested in making better programs
* Developers who are adding Python to “legacy” C/C++ code.
» Systems integration (Python as a glue language).
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C/C++ Programming
The good

* High performance.
* Low-level systems programming.
* Available everywhere and reasonably well standardized

The bad

» The compile/debug/nap development cycle.
« Difficulty of extending and modifying.
* Non-interactive.

The ugly
» Writing user-interfaces.
« Writing graphical user-interfaces (worse).
* High level programming.
» Systems integration (gluing components together).
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What Python Brings to C/C++

An interpreted high-level programming environment
+ Flexibility.
* Interactivity.
* Scripting.
» Debugging.
* Testing
* Rapid prototyping.

Component gluing

* A common interface can be provided to different C/C++ libraries.
* C/C++ libraries become Python modules.

* Dynamic loading (use only what you need when you need it).

The best of both worlds

* Performance of C
* The power of Python.
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Points to Ponder

“Surely the most powerful stroke for software productivity, reliability, and simplicity
has been the progressive use of high-level languages for programming. Most
observers credit that development with at least a factor of 5 in productivity, and
with concomitant gains in reliability, simplicity, and comprehensibility.”

--- Frederick Brooks

“The best performance improvement is the transition from the nonworking state to
the working state.”
--- John Ousterhout

“Less than 10% of the code has to do with the ostensible purpose of the system;
the rest deals with input-output, data validation, data structure maintenance, and
other housekeeping”

--- Mary Shaw

“Don’t keep doing what doesn’t work”
--- Anonymous

SWIG Tutorial 7th International Python Conference

Notes




Click here to download full PDF material



https://www.computer-pdf.com/programming/171-tutorial-interfacing-c-cpp-and-python-with-swig.html

