Interfacing C/C++ and Python with SWIG

David M. Beazley
Department of Computer Science
University of Chicago
Chicago, lllinois 60615

beazley@cs.uchicago.edu

SWIG Tutorial 7th International Python Conference



Prerequisites

C/C++ programming

* You’ve written a C program.
* You’ve written a Makefile.
* You know how to use the compiler and linker.

Python programming
* You've heard of Python.
* You’ve hopefully written a few Python programs.

Optional, but useful

» Some knowledge of the Python C API.
« C++ programming experience.

Intended Audience
» C/C++ application developers interested in making better programs
* Developers who are adding Python to “legacy” C/C++ code.
» Systems integration (Python as a glue language).

SWIG Tutorial 7th International Python Conference

Notes



C/C++ Programming
The good

* High performance.
* Low-level systems programming.
* Available everywhere and reasonably well standardized

The bad

» The compile/debug/nap development cycle.
« Difficulty of extending and modifying.
* Non-interactive.

The ugly
» Writing user-interfaces.
« Writing graphical user-interfaces (worse).
* High level programming.
» Systems integration (gluing components together).

SWIG Tutorial 7th International Python Conference

Notes



What Python Brings to C/C++

An interpreted high-level programming environment
+ Flexibility.
* Interactivity.
* Scripting.
» Debugging.
* Testing
* Rapid prototyping.

Component gluing

* A common interface can be provided to different C/C++ libraries.
* C/C++ libraries become Python modules.

* Dynamic loading (use only what you need when you need it).

The best of both worlds

* Performance of C
* The power of Python.

SWIG Tutorial 7th International Python Conference

Notes



Points to Ponder

“Surely the most powerful stroke for software productivity, reliability, and simplicity
has been the progressive use of high-level languages for programming. Most
observers credit that development with at least a factor of 5 in productivity, and
with concomitant gains in reliability, simplicity, and comprehensibility.”

--- Frederick Brooks

“The best performance improvement is the transition from the nonworking state to
the working state.”
--- John Ousterhout

“Less than 10% of the code has to do with the ostensible purpose of the system;
the rest deals with input-output, data validation, data structure maintenance, and
other housekeeping”

--- Mary Shaw

“Don’t keep doing what doesn’t work”
--- Anonymous

SWIG Tutorial 7th International Python Conference

Notes




Click here to download full PDF material



https://www.computer-pdf.com/programming/171-tutorial-interfacing-c-cpp-and-python-with-swig.html

