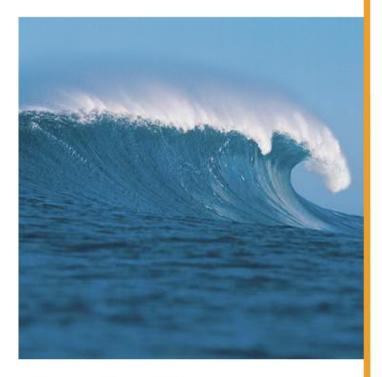


Lars Thalmann

Technical lead Replication, Backup, and Engine Technology

Mats Kindahl


Lead Developer Replication Technology

MySQL Conference and Expo 2008

Concepts

MySQL Replication

Why?

- High Availability
 Possibility of fail-over
- 2. Load-balancing/Scaleout Query multiple servers
- 3. Off-site processing Don't disturb master

How?

Snapshots (Backup)

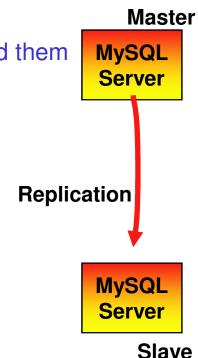
- Client program mysqldump
 With log coordinates
- 2. Using backup InnoDB, NDB

Binary log

- Replication
 Asynchronous pushing to slave
- 2. Point-in-time recovery Roll-forward

Terminology

Master MySQL Server

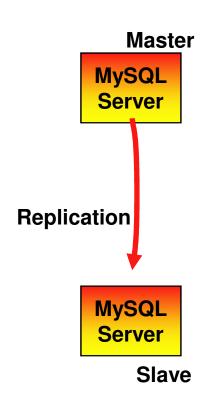

- Changes data
- Has binlog turned on
- Pushes binlog events to slave after slave has requested them

Slave MySQL Server

- Main control point of replication
- Asks master for replication log
- Gets binlog event from master

Binary log

- Log of everything executed
- Divided into transactional components
- Used for replication and point-in-time recovery


Terminology

Synchronous replication

- A transaction is not committed until the data has been replicated (and applied)
- Safer, but slower
- This is available in MySQL Cluster

Asynchronous replication

- A transaction is replicated after it has been committed
- Faster, but you can in some cases loose transactions if master fails
- Easy to set up between MySQL servers

Click here to download full PDF material