
 1

UML Tutorial
The Unified Modeling Language has quickly become the de- facto standard for building Object -Oriented software.

The OMG specificat ion states: "The Unified Modeling Language (UML) is a graphical language for visualizing, specifying,

const ruct ing, and document ing the art ifacts of a software- intensive system. The UML offers a standard way to write a system 's

blueprints, including conceptual things such as business processes and system funct ions as well as concrete things such as

programming language statements, database schemas, and reusable software components."

The important point to note here is that UML is a ' language' for specifying and not a method or procedure. The UML is used to

define a software system; to detail the art ifacts in the system, to document and const ruct - it is the language that the blueprint is

writ ten in. The UML m ay be used in a variety of ways to support a software development methodology' but in itself it does not

specify that methodology or process.

UML defines the notat ion and semant ics for the following domains:

- The User I nteract ion or Use Case Model - describes the boundary and interact ion between the system and users. Corresponds

in some respects to a requirements model.

- The I nteract ion or Com m unicat ion Model - describes how objects in the system will interact with each other to get work done.

- The State or Dynam ic Model - State charts describe the states or condit ions that classes assume over t ime. Act ivity graphs

describe the workflow's the system will implement .

- The Logical or Class Model - describes the classes and objects that will make up the system.

- The Physical Component Model - describes the software (and somet imes hardware components) that make up the system.

- The Physical Deployment Model - describes the physical architecture and the deployment of components on that hardware

architecture.

UML 2 .0
UML 2 builds on the already highly successfull UML 1.x standard, which has become an indust ry standard for modeling, design and

const ruct ion of software systems as well as more generalized business and scient ific processes. UML 2 defines 13 basic diagram

types, divided into two general sets:

1 . St ructural Modeling Diagram s

 St ructure diagrams define the stat ic architecture of a model. They are used to model the 'things' that make up a model - the

classes, objects, interfaces and physical com ponents. I n addit ion they are used to model the relat ionships and dependencies

between elements.

- Package diagram s are used to divide the model into logical containers or 'packages' and describe the interact ions between

them at a high level

- Class or St ructural diagrams define the basic building blocks of a model: the types, classes and general materials that are

used to const ruct a full model

- Object diagrams show how instances of st ructural elements are related and used at run- t ime.

- Composite St ructure diagrams provide a means of layering an element 's st ructure and focusing on inner detail, const ruct ion

and relat ionships

- Com ponent diagram s are used to model higher level or more complex st ructures, usually built up from one or more classes,

and providing a well defined interface

- Deployment diagrams show the physical disposit ion of significant artefacts within a real-world set t ing.

2 . Behavioral Modeling Diagram s

 Behavior diagrams capture the variet ies of interact ion and instantaneous state within a model as it 'executes' over t ime.

- Use Case diagram s are used to model user/ system interact ions. They define behavior, requirements and const raints in the

form of scripts or scenarios

- Act ivity diagram s have a wide number of uses, from defining basic program flow, to capturing the decision points and act ions

within any generalized process

- State Machine diagram s are essent ial to understanding the instant to instant condit ion or " run state" of a model when it

executes

- Com m unicat ion diagram s show the network and sequence of messages or communicat ions between objects at run- t ime durin

a collaborat ion instance

- Sequence diagrams are closely related to Communicat ion diagrams and show the sequence of messages passed between

objects using a vert ical t imeline

- Tim ing diagrams fuse Sequence and State diagrams to provide a view of an object 's state over t ime and messages which

m odify that state

- I nteract ion Overview diagrams fuse Act ivity and Sequence diagrams to provide allow interact ion fragments to be easily

combined with decision points and flows

 2

UML 2 Act ivity Diagram
Act ivity Diagram s

I n UML an act ivity diagram is used to display the sequence of act ivit ies. Act ivity Diagrams show the workflow from a start point to

the finish point detailing the many decision paths that exist in the progression of events contained in the act ivity. They may be use

to detail situat ions where parallel processing may occur in the execut ion of some act ivit ies. Act ivity Diagrams are useful for

Business Modelling where they are used for detailing the processes involved in business act ivit ies.

An Example of an Act ivity Diagram is shown here

The following sect ions describe the elements that const itute an Act ivity diagram.

Act ivit ies

An act ivity is the specificat ion of a parameterized sequence of behaviour. An act ivity is shown as a round-cornered rectangle

enclosing all the act ions, cont rol flows and other elem ents that m ake up the act ivity.

Act ions
An act ion represents a single step within an act ivity. Act ions are denoted by round-cornered rectangles.

Act ion Constraints

Const raints can be at tached to an act ion. The following diagram shows an act ion with local pre- and post -condit ions.

 3

Control Flow
A cont rol flow shows the flow of cont rol from one act ion to the next . I ts notat ion is a line with an arrowhead.

I nit ia l Node
An init ial or start node is depicted by a large black spot , as depicted below.

Final Node
There are two types of final node: act ivity and flow final nodes. The act ivity final node is depicted as a circle with a dot inside.

The flow final node is depicted as a circle with a cross inside.

The difference between the two node types is that the flow final node denotes the end of a single cont rol flow; the act ivity final

node denotes the end of all cont rol flows within the act ivity.

Objects and Object Flow s

An object flow is a path along which objects or data can pass. An object is shown as a rectangle.

An object flow is shown as a connector with an arrowhead denot ing the direct ion the object is being passed.

 4

An object flow must have an object on at least one of its ends. A shorthand notat ion for the above diagram would be to use input

and output pins.

A data store is shown as an object with the «datastore» keyword.

Decision and Merge Nodes

Decision nodes and merge nodes have the same notat ion: a diamond shape. They can both be named. The cont rol flows com ing

away from a decision node will have guard condit ions which will allow cont rol to flow if the guard condit ion is met . The following

diagram shows use of a decision node and a merge node.

Fork and Join Nodes

Forks and joins have the same notat ion: either a horizontal or vert ical bar (the orientat ion is dependent on whether the cont rol flo

is running left to r ight or top to bot tom) . They indicate the start and end of concurrent threads of cont rol. The following diagram

shows an example of their use.

A join is different from a merge in that the join synchronises two inflows and produces a single out flow. The out flow from a join

cannot execute unt il all inflows have been received. A merge passes any cont rol flows st raight through it . I f two or more inflows ar

received by a merge symbol, the act ion pointed to by its out flow is executed two or more t imes.

Expansion Region

An expansion region is a st ructured act ivity region that executes mult iple t imes. I nput and output expansion nodes are drawn as a

group of three boxes represent ing a mult iple select ion of items. The keyword iterat ive, parallel or st ream is shown in the top left

corner of the region.

 5

Except ion Handlers

Except ion Handlers can be modelled on act ivity diagrams as in the example below.

I nterrupt ible Act ivity Region

An interrupt ible act ivity region surrounds a group of act ions that can be interrupted. I n the very simple example below, the Proces

Order act ion will execute unt il complet ion, when it will pass cont rol to the Close Order act ion, unless a Cancel Request interrupt is

received which will pass cont rol to the Cancel Order act ion.

Part it ion

An act ivity part it ion is shown as either horizontal or vert ical swim lanes. I n the following diagram, the part it ions are used to

separate act ions within an act ivity into those performed by the account ing department and those performed by the customer.

Click here to download full PDF material

https://www.computer-pdf.com/design-analysis/181-tutorial-uml-tutorial.html

