
IOWA STATE UNIVERSITY

Serialization in Java ;Binary and XMLͿ

Kyle Woolcock

ComS 430

4/4/2014

2

Table of Contents
Introduction .. 3

Why Serialize? ... 3

How to Serialize .. 3

Serializable Interface ... 3

Externalizable Interface .. 3

Using These Interfaces to Serialize ... 5

What Is Not Serialized? ... 6

Problems with Serializing .. 6

Versioning ... 6

Object References ... 6

Serializing to XML .. 6

Creating Serializable Classes ... 7

Using These Classes to Serialize .. 8

Conclusion ... 8

Appendix A: Table of Figures .. 10

Appendix B: Acknowledgements .. 10

Works Cited ... 11

3

Introduction
Serialization is the process of converting objects to bytes that can then be used to reconstruct the

original object. This process has many applications including remote procedure calls and allowing for

persistent data. Serialization is a general programming concept, present in many object-oriented

languages. This tutorial will focus on implementations in Java, and how Java handles serialization

behind the scenes, but the general concepts can be applied to many languages. Alternatives to certain

problems serialization solves to exist. For data persistence, often times databases are used where we

just save the information the object stores instead of the object state itself. Java also supports the

ability to serialize to XML which is more human readable, and allows for communication between

programs written at different times and in different languages. To help read the document, it is

important to note that all variable names appear in a different typeset, all class names are bolded, all

exceptions are italicized, all method names are followed by parentheses, and all Java keywords appear

in bold and italics.

Why Serialize?
Serialization allows for a quick and easy way to store data after a program finishes execution. The

serialized data is independent of the Java virtual machine (JVM) that generated it. This means that as

long as a different computer has access to the class files and the serialized data, the object can be

reconstructed just as it originally was. It also allows for remote procedure calls. To call a method on

another machine, often an object is needed argument. Serialization converts an object to a byte stream

that can then be sent over a network and deserialized on the target machine.

How to Serialize

Serializable Interface

Java provides two different ways to allow a class to be serialized. The first is to implement the

Serializable interface. This is just a marker interface, meaning it contains no methods. Java will also

implement a serialVersionUID variable, although it is advised manual assign the variable. It is the

unique identifier Java uses to tell which class it is reconstructing from a byte stream (more on this later).

This is the quickest and easiest way but gives you very little control over how the data is written. Figure

1 shows an implementation of Serializable with an example of a serialVersionUID variable. The

one in the example was auto generated by Java, but set so that further changes to the class does not

affect it. There will be more on this when we talk about versioning in the section on serialization

problems.

Externalizable Interface

Externalizable is an interface that extends Serializable. Unlike Serializable, Externalizable is not a marker

interface. It requires an implementation of the methods readExternal() and writeExternal(). In addition

to these methods, the class must also have a default constructor. This is because when using

readExternal() and writeExternal(), a constructor is actually called for the object and then its variables

are updates. This allows for a faster execution time than Serializable. To implement readExternal() and

writeExternal() manually write the variables of the class to the output stream given. In Figure 2, there is

an implementation of the Externalizable Interface along with the readExternal() and writeExternal().

4

Figure 1

Figure 2

5

Using These Interfaces to Serialize

After implementing Serializable or Externalizable, Java provides two streams to read and write objects:

ObjectOutputStream and ObjectInputStream. To create these streams, give them an instance of a file

stream that was created with the file to be written to or read from. After doing that,

ObjectOutputStream has various methods to write different objects and primitives to the file, notably

writeObject(). In Figure 3, there is an example of a main method that is serializing and deserializing an

instance of the rectangle class in Figure 1. The yellow highlighting shows the serialization steps whereas

the teal highlighting shows the deserialization steps. Most of the exceptions are pretty standard, the

only new one of note is ClassNotFoundException. This is thrown if the JVM cannot find a class with a

serialVersionUID matching that of the one read from the file. This can happen if the class files

needed to reconstruct the object are not found (either not present on your machine or not in the build

path) or if there is a versioning problem, which will be discussed in a later section.

Figure 3

Click here to download full PDF material

https://www.computer-pdf.com/programming/java/244-tutorial-serialization-in-java-binary-and-xml.html

