
A Tutorial on Socket Programming in Java

Natarajan Meghanathan

Assistant Professor of Computer Science

Jackson State University

Jackson, MS 39217, USA

Phone: 1-601-979-3661; Fax: 1-601-979-2478

E-mail: natarajan.meghanathan@jsums.edu

Abstract

We present a tutorial on socket programming in Java. This tutorial illustrates several examples

on the two types of socket APIs: connectionless datagram sockets and connection-oriented

stream-mode sockets. With datagram sockets, communication occurs in the form of discrete

messages sent from the sender to receiver; whereas with stream-mode sockets, data is transferred

using the concept of a continuous data stream flowing from a source to a destination. For both

kinds of sockets, we illustrate examples for simplex (one-way) and duplex (bi-directional)

communication. We also explain in detail the difference between a concurrent server and

iterative server and show example programs on how to develop the two types of servers, along

with an example. The last section of the tutorial describes the Multicast Socket API in Java and

illustrates examples for multicast communication. We conclude by providing descriptions for

several practice programming exercises that could be attempted at after reading the tutorial.

1. Introduction

Interprocess communication (IPC) is the backbone of distributed computing. Processes are

runtime representations of a program. IPC refers to the ability for separate, independent

processes to communicate among themselves to collaborate on a task. The following figure

illustrates basic IPC:

Figure 1: Interprocess Communication

Two or more processes engage in a protocol – a set of rules to be observed by the participants

for data communication. A process can be a sender at some instant of the communication and

can be a receiver of the data at another instant of the communication. When data is sent from one

process to another single process, the communication is said to be unicast. When data is sent

from one process to more than one process at the same time, the communication is said to be

multicast. Note that multicast is not multiple unicasts.

Process 1 Process 2

Sender Receiver

Data

Figure 2: Unicast Vs. Multicast

Most of the operating systems (OS) like UNIX and Windows provide facilities for IPC. The

system-level IPC facilities include message queues, semaphores and shared memory. It is

possible to directly develop network software using these system-level facilities. Examples are

network device drivers and system evaluation programs. On the other hand, the complexities of

the applications require the use of some form of abstraction to spare the programmer of the

system-level details. An IPC application programming interface (API) abstracts the details and

intricacies of the system-level facilities and allows the programmer to concentrate on the

application logic.

The Socket API is a low-level programming facility for implementing IPC. The upper-layer

facilities are built on top of the operations provided by the Socket API. The Socket API was

originally provided as part of the Berkeley UNIX OS, but has been later ported to all operating

systems including Sun Solaris and Windows systems. The Socket API provides a programming

construct called a “socket”. A process wishing to communicate with another process must create

an instance or instantiate a socket. Two processes wishing to communicate can instantiate

sockets and then issue operations provided by the API to send and receive data. Note that in

network parlance, a packet is the unit of data transmitted over the network. Each packet contains

the data (payload) and some control information (header) that includes the destination address.

A socket is uniquely identified by the IP address of the machine and the port number at which

the socket is opened (i.e. bound to). Port numbers are allocated 16 bits in the packet headers and

thus can be at most 66535. Well-known processes like FTP, HTTP and etc., have their sockets

opened on dedicated port numbers (less than or equal to 1024). Hence, sockets corresponding to

user-defined processes have to be run on port numbers greater than 1024.

In this chapter, we will discuss two types of sockets – “connectionless” and “connection-

oriented” for unicast communication, multicast sockets and several programming examples to

illustrate different types of communication using these sockets. All of the programming

examples are illustrated in Java.

2. Types of Sockets

The User Datagram Protocol (UDP) transports packets in a connectionless manner [1]. In a

connectionless communication, each data packet (also called datagram) is addressed and routed

individually and may arrive at the receiver in any order. For example, if process 1 on host A

sends datagrams m1 and m2 successively to process 2 on host B, the datagrams may be

m

P1

P2

m

P1

P3

m

P2 P4

m

transported on the network through different routes and may arrive at the destination in any of

the two orders: m1, m2 or m2, m1.

The Transmission Control Protocol (TCP) is connection-oriented and transports a stream of

data over a logical connection established between the sender and the receiver [1]. As a result,

data sent from a sender to a receiver is guaranteed to be received in the order they were sent. In

the above example, messages m1 and m2 are delivered to process 2 on host B in the same order

they were sent from process 1 on host A.

A socket programming construct can use either UDP or TCP transport protocols. Sockets that

use UDP for transport of packets are called “datagram” sockets and sockets that use TCP for

transport are called “stream” sockets.

3. The Connectionless Datagram Socket

In Java, two classes are provided for the datagram socket API: (a) The DatagramSocket class for

the sockets (b) The DatagramPacket class for the packets exchanged. A process wishing to send

or receive data using the datagram socket API must instantiate a DatagramSocket object, which

is bound to a UDP port of the machine and local to the process.

To send a datagram to another process, the sender process must instantiate a DatagramPacket

object that carries the following information: (1) a reference to a byte array that contains the

payload data and (2) the destination address (the host ID and port number to which the receiver

process’ DatagramSocket object is bound).

At the receiving process, a DatagramSocket object must be instantiated and bound to a local

port – this port should correspond to the port number carried in the datagram packet of the

sender. To receive datagrams sent to the socket, the receiving process must instantiate a

DatagramPacket object that references a byte array and call the receive method of the

DatagramSocket object, specifying as argument, a reference to the DatagramPacket object. The

program flow in the sender and receiver process is illustrated in Figure 3 and the key methods

used for communication using connectionless sockets are summarized in Table 1.

Figure 3: Program flow in the sender and receiver process (adapted from [2])

Sender Program

Create a DatagramSocket object

and bind it to any local port;

Place the data to send in a byte

array;

Create a DatagramPacket object,

specifying the data array and the

receiver’s address;

Invoke the send method of the

DatagramSocket object and pass as

argument, a reference to the

DatagramPacket object.

Receiver Program

Create a DatagramSocket object

and bind it to a specific local port;

Create a byte array for receiving

the data;

Create a DatagramPacket object,

specifying the data array.

Invoke the receive method of the
socket with a reference to the

DatagramPacket object.

Table 1: Key Commonly Used Methods of the DatagramSocket API (adapted from [3])

No. Constructor/ Method Description
DatagramSocket class

1 DatagramSocket()
Constructs an object of class DatagramSocket and binds the
object to any available port on the local host machine

2 DatagramSocket(int port)
Constructs an object of class DatagramSocket and binds it to

the specified port on the local host machine

3
DatagramSocket (int port, InetAddress

addr)

Constructs an object of class DatagramSocket and binds it to

the specified local address and port

4 void close() Closes the datagram socket

5
void connect(InetAddress address, int

port)

Connects the datagram socket to the specified remote address

and port number on the machine with that address

6 InetAddress getLocalAddress()
Returns the local InetAddress to which the socket is

connected.

7 int getLocalPort()
Returns the port number on the local host to which the

datagram socket is bound

8
InetAddress getInetAddress() Returns the IP address to which the datagram socket is

connected to at the remote side.

9 int getPort() Returns the port number at the remote side of the socket

10 void receive(DatagramPacket packet) Receives a datagram packet object from this socket

11 void send(DatagramPacket packet) Sends a datagram packet object from this socket

12 void setSoTimeout(int timeout) Set the timeout value for the socket, in milliseconds

DatagramPacket class

13
DatagramPacket(byte[] buf, int length,

InetAddress, int port)

Constructs a datagram packet object with the contents stored

in a byte array, buf, of specified length to a machine with the

specified IP address and port number

14 InetAddress getAddress()

Returns the IP address of the machine at the remote side to

which the datagram is being sent or from which the datagram

was received

15 byte [] getData() Returns the data buffer stored in the packet as a byte array

16 int getLength()
Returns the length of the data buffer in the datagram packet
sent or received

17 int getPort()

Returns the port number to which the datagram socket is

bound to which the datagram is being sent or from which the

datagram is received

18 void setData(byte []) Sets the data buffer for the datagram packet

19 void setAddress(InetAddress iaddr)
Sets the datagram packet with the IP address of the remote

machine to which the packet is being sent

20 void setPort(int port)
Sets the datagram packet with the port number of the

datagram socket at the remote host to which the packet is sent

With connectionless sockets, a DatagramSocket object bound to a process can be used to send

datagrams to different destinations. Also, multiple processes can simultaneously send datagrams

to the same socket bound to a receiving process. In such a situation, the order of the arrival of the

datagrams may not be consistent with the order they were sent from the different processes. Note

that in connection-oriented or connectionless Socket APIs, the send operations are non-blocking

and the receive operations are blocking. A process continues its execution after the issuance of a

send method call. On the other hand, once a process calls the receive method on a socket, the

process is suspended until a datagram is received. To avoid indefinite blocking, the setSoTimeout

method can be called on the DatagramSocket object.

We now present several sample programs to illustrate the use of the DatagramSocket and

DatagramPacket API. Note that in all these exercises, the receiver programs should be started

first before starting the sender program. This is analogous to the fact that in any conversation, a

receiver should be tuned and willing to hear and receive the information spoken (sent) by the

sender. If the receiver is not turned on, then whatever the message was sent will be dropped at

the receiving side. The following code segments illustrate the code to send to a datagram packet

from one host IP address and port number and receive the same packet at another IP address and

port number. Though the sender and receiver programs are normally run at two different hosts,

sometimes one can test the correctness of their code by running the two programs on the same

host using ‘localhost’ as the name of the host at remote side. This is the approach we use in this

book chapter. For all socket programs, the package java.net should be imported; and very often

we need to also import the java.io package to do any input/output with the sockets. Of course, for

any file access, we also need to import the java.io package. Also, since many of the methods (for

both the Connectionless and Stream-mode API) could raise exceptions, it is recommended to put

the entire code inside a try-catch block.

3.1 Example Program to Send and Receive a Message using Connectionless Sockets

The datagram receiver (datagramReceiver.java) program illustrated below can receive a

datagram packet of size at most 40 bytes. As explained before, the receive() method call on the

--

import java.net.*;

import java.io.*;

class datagramReceiver{

 public static void main(String[] args){

 try{

 int MAX_LEN = 40;

 int localPortNum = Integer.parseInt(args[0]);

 DatagramSocket mySocket = new DatagramSocket(localPortNum);

 byte[] buffer = new byte[MAX_LEN];

 DatagramPacket packet = new DatagramPacket(buffer, MAX_LEN);

 mySocket.receive(packet);

 String message = new String(buffer);

 System.out.println(message);

 mySocket.close();

 }

 catch(Exception e){e.printStackTrace();}

 }

}

Figure 4: Program to Receive a Single Datagram Packet

import java.net.*;

import java.io.*;

Click here to download full PDF material

https://www.computer-pdf.com/programming/java/248-tutorial-a-tutorial-on-socket-programming-in-java.html

