
C++ for statisticians,

with a focus on interfacing from R and R packages

Chris Paciorek

February 6, 2014

These notes are the basis for a set of three 1.5 hour workshops on using C++ for statistical

work. The first workshop focuses on the basics of C++ useful for statistical work. I don’t expect

to teach you C++ in that time, but to give you an overview so that you can go learn what you need

more easily, or for those who know a bit of C or C++ already to help round out your knowledge.

The second workshop focuses on calling C++ from R via a variety of methods. The third workshop

focuses on creating R packages.

A few things to note in advance:

• My examples here will be silly toy examples for the purpose of keeping things simple and

focused.

• I’ll try to use italics to indicate names of things and typewriter font to indicate actual

syntax. I’ll likely slip up occasionally.

• A comment about the speed of R compared to C/C++. Oftentimes one will hear comparisons

where R is orders of magnitude slower than C/C++ or some other software. I think these

comparisons sometimes use R in naive ways (for example, avoidable for loops instead of

vectorized calculations) and other times are not recognizing that a lot of the heavy numerical

lifting in R, such as linear algebra, is done in compiled code and is likely to be comparable to

doing it directly in compiled code. That said, there are lots of cases where you will want to

use C/C++ to get substantial speedups. The motivation of this set of workshops is to enable

you to use C/C++ from R for the slow parts and use R for the parts that don’t involve serious

computation, taking advantage of R’s rapid coding, ease of use, input/output capabilities,

and graphics.

• Also, most of this is focused on Linux as this is the environment in which most heavy-duty

scientific computation gets done. Much of this should work on Macs since they run a variant

1

of UNIX under the hood. You’ll need xcode installed on the Mac.

Resources

• Statistical Computing in C++ and R by Randall Eubank and Ana Kupresanin

• R extensions manual

• Dirk Eddelbuettel’s Rcpp tutorial at useR! 2012 and Rcpp paper

• Hadley Wickham’s guide to packages as part of his devtools package:

https://github.com/hadley/devtools/wiki/Package-basics

• Papers on RcppArmadillo (http://www.sciencedirect.com/science/article/pii/S0167947313000492)

and RcppEigen (http://www.jstatsoft.org/v52/i05/) [both also linked from Dirk’s website]

1 C and C++ basics

1.1 C vs. C++

C++ builds on standard C in a number of ways. These include:

• additional functionality such as function overloading

• object-oriented programming

• the Standard Template Library that provides a variety of data structures and algorithms to

operate on them

• templates, which allow you to more easily write functions that deal with multiple types

In the following, I’ll describe the basics of coding in C and C++. I’ll mix together standard C with

features specific to C++ below, without being explicit about it and will generally refer to it as C++

even if I’m just using pure C functionality

1.2 Structure of a C/C++ program

A program consists of several pieces. Let’s look though the example program below and see what

the main pieces are.

2

This program does my favorite numerically intensive calculation, calculating the Cholesky

decomposition of X⊤
X for random square X . dsyrk is Lapack’s crossproduct function and dpotrf

is Lapack’s Cholesky decomposition.

// this is test.cpp

#include <iostream>

#include <iomanip>

#include <vector>

#include <math.h>

#include <time.h>

#include <R.h>

#include <Rmath.h>

#define PI 3.14159

using namespace std;

// these declarations are needed as I don't think there is a lapack.h

extern "C" int dpotrf_(char* uplo, int* n, double* a, int* lda, int* info);

extern "C" int dsyrk_(char* uplo, char* trans, int* n, int* k,

double* alpha, double* a, int* lda, double* beta, double* c, int* ldc);

// this is a one-line comment

/* This is

a multi-line

comment.

*/

// compilation:

// g++ -o test test.cpp -I/usr/share/R/include -llapack -lblas

// -lRmath -lR -O3 -Wall

int main(){

int size = 8000;

int info = 0;

char uplo = 'U';

char trans = 'N';

double alpha = 1.0;

3

double beta = 0.0;

double* x = new double[size*size];

double* C = new double[size*size];

for(int i = 0; i < size*size; i++){

x[i] = rnorm(0.0, 1.0);

C[i] = 0.0;

}

cout << "done with rnorm" << endl;

dsyrk_(&uplo, &trans, &size, &size, &alpha, x, &size, &beta, C, &size);

cout << "done crossprod" << endl;

dpotrf_(&uplo,&size,C,&size,&info);

cout << "done chol" << endl;

return 0;

}

At the top are ’preprocessor’ directives that provide information to the the preprocessor that

runs before compilation. In particular, if you call functions from other libraries, you need to

include the header files that contain the function prototypes (the definition of the function without

the body) so that the compiler can check that you are calling the functions correctly (i.e., in terms

of the arguments) in your code. You include standard system header files using <>, e.g.,

#include <iostream>

#include <Rmath.h>

For C++ system header files, you generally don’t need the .h.

For non-standard header files (e.g., for external libraries obtained from other sources and your

own user-written files), you put the file name in double quotes and you need the full filename with

.h, e.g.,

include “myheader.h”

You can define constants with #define. This allows one to avoid having “magic” numbers

sprinkled around your code and then having to remember what they mean. However you may want

to do this via const variables (more later).

You can do lots of other stuff with preprocessor directives, but we won’t go into them here.

The “using namespace” tells the compiler that you’ll make use of objects and functions from

the standard template library (STL). This is akin to saying library(pkgName) in R, which

loads objects and functions from the package into your workspace so they’re accessible to you,

and to Python’s import statement.

The strangely named dpotrf_ is the Lapack Cholesky routine and dsyrk_ the crossproduct func-

tion. Calling Lapack routines involves a bunch of strange stuff, including the use of extern, which

4

has to do with scoping issues that I don’t fully understand. the _ occurs because a Fortran function

is being called behind the scenes and typically an underscore is attached to the name of Fortran

functions during their compilation.

If you’re creating a full-fledged program that you call from the command line, you need a

main() function that is where your execution begins and ends. From main(), you can of course

call other functions. The return value of main() can just default to 0 as below or you could have it

indicate whether the program executed correctly and finished without errors (0 is standard) or not

(1 is standard in this case). If you’re just going to create a library file that contains functions you’ll

call from R, you don’t need main(). Just create your functions and compile as discussed below

when we talk about calling C++ from R.

One line comments begin with “//”. Multi-line comments can be enclose in the following

syntax, e.g.: /* THIS is a comment */

1.3 Compiling and linking

Creating a program from C++ code involves compiling the program into a binary executable. The

standard C++ compiler is g++. The standard C compiler is gcc. You can use g++ for purely C

code, so I’ll just use g++ throughout. Also for code that includes MPI calls, there is mpicxx for

C++ and mpicc for C.

When you compile code, a couple things happen. The code gets compiled into binary and code

from different binaries gets linked together.

Often your program will use code from other libraries (e.g., BLAS and LAPACK). In this case

you need to link the other libraries into your executable. There are two options for linking. You

can link in a static version of the library, called an archive. Such files have names of the form:

lib{libName}.a. The binary is included directly in your executable at linking time. Alternatively,

you can link to dynamically to a shared object library (also called a dynamic link library - such

files in Windows are DLLs). In this case the binary is not included directly in the executable at

linking time, but is only referenced, and when your program is run, the code is obtained from the

lib{libName}.so file. This reduces the size of your binary and allows one to use updated versions of

the .so without changing the program, but it also means that the .so files that are linked to need to

be available at run-time. In general this is not an issue, so using dynamic linking is very common.

There are a number of dependencies that need to be accounted for in compiling and linking. In

the first step, code is compiled (creating a .o file). At this stage, you need to make sure that the

compiler can find the necessary header files (.h) containing the signatures of any external library

functions that you call in your code. Often these files are in standard places on your filesystem

and the compiler can find them, but sometimes you need to add a flag pointing to the directory(ies)

5

Click here to download full PDF material

https://www.computer-pdf.com/programming/c-cpp/255-tutorial-cpp-for-statisticians.html

