
An introduction to C++ template programming

Hayo Thielecke

University of Birmingham

www.cs.bham.ac.uk/~hxt

March 17, 2014

Abstract

These notes present an introduction to template programming in C++.

They are aimed particularly at readers who are reasonably familiar with

functional languages, such as OCAML. We will concentrate on features

and idioms that are well understood from functional languages: paramet-

ric polymorphism and pattern-matching on function arguments.

Contents

1 Introduction 2

2 Templates in the design of modern C++ 2

3 Templates and type parameters 3

4 Parametric polymorphism 5

5 Writing templates by abstracting over types 6

6 Classes and pointers as template arguments 7

7 Function pointers as template arguments 8

8 Member functions of template classes 10

9 Function objects and templates 10

10 Template std::function 12

11 Void pointers and polymorphism 12

12 Template template parameters 14

13 Type-safety and templates 14

14 Template typing versus derived class typing 16

15 Specialization as pattern-matching on template arguments 18

1



16 Dependent types via templates 20

17 Higher-order templates (for λ-calculus fans) 21

1 Introduction

These notes are intended for readers who are familiar with basic procedural
programming in a C-like syntax (such as Java) as well as functional programming
(e.g., in OCAML). They were written with the students on my second-year
C/C++ course in mind, who have been taught both Java and OCAML in their
first year. See
http://www.cs.bham.ac.uk/~hxt/2013/c-programming-language/

However, readers may safely skip everything about OCAML when they do not
find the comparison helpful.

In these notes, I am trying to go deep (to the extent possible in an under-
graduate first course in C/C++) rather than broad. If there is something I find
complicated or not absolutely necessary for the development at hand, I will try
to be silent about it rather than muddy the waters. As the old saying goes,
“somewhere inside C++ there is a smaller, cleaner language trying to get out”,
and until that language appears, all we can do is form subsets to our taste.

Templates are perhaps the part of C++ where compilers are most likely to
deviate from the standard [C++], hence one may sometimes get different be-
haviours from different compilers. The examples below were tested with Xcode
5.0.2.

2 Templates in the design of modern C++

In object-oriented programming, the word “polymorphism” is often used for
dynamic dispatch of methods calls (in C++ terminology: virtual functions).
In Java, you get this dynamic dispatch behaviour for all overidden methods.
See also http://www.cs.bham.ac.uk/~hxt/2013/c-programming-language/

objects-in-c.pdf

The “polymorphism” in dynamic dispatch is completely different from the
parametric polymorphism provided by templates. For comparison:

Templates Dynamic dispatch

When compile-time run-time
Typing Type parameters Subtyping
Efficiency + no runtime overhead - indirection via pointers

- potential code bloat at runtime
Related to OCAML and Haskell polymorphism Objective C messages

Java generics Java methods
ML functors

As C++ provides both templates and dynamic dispatch, they can be combined,
which can become quite complex. On the other hand, it is an interesting ques-
tion whether the increasing power of templates in C++ makes inheritance less
important than it was claimed to be in the 1990s. The C++ standard library

2



in now called the Standard Template Library (STL), and templates seem more
central to its design then elaborate deep class hierarchies.

C++ can be thought of as composed of two layers of language constructs.
The lower layer is a simple procedural language aimed at low-level data struc-
tures built mainly from structs and pointers. That language is the “C” layer
in “C++”. On top of it, the “++” layer, so to speak, provides abstraction
mechanisms aimed at constructing complex software in a structured and type-
safe way. The best known features of this high-level language layer that C++
puts on top of C are perhaps objects and classes, so that C++ is sometimes
regarded, inaccurately, as an “object-oriented language”. While C++ histori-
cally evolved [Str94] from “C with classes”, the latest standard, C++11, defines
a much more general language. Object-oriented programming is one of many
programming styles supported by C++11. Note that using classes in C++
does not by itself constitute object-oriented programming. The term “class” is
used rather widely for user-defined types in C++ and more or less interchange-
ably with struct. If one does not use inheritance and in particular virtual
functions, there is nothing particularly object-oriented about such classes or
structures. For instance, we may use a class with only static member functions
as the best approximation that C++ provides to (tuples of) first-class functions,
and structures may be plain old data tuples.

In these notes, we will concentrate on a subset of C++11 that may be seen as
“C with templates”. Templates are by far the most advanced part of C++ and,
perhaps surprisingly, the part of C++ that is closest to functional programming
and lambda calculus. Templates form a higher-order, typed, purely functional
language that is evaluated at compile time [Str12b, Str12a]. Note, however,
that we will not pretend that C++ is, or ought to be, a functional programming
language. The lower language level (inside functions and structures) can still be
typical and idiomatic C, with assignments, pointers and all the rest; it is only the
higher level of abstraction mechanisms that resembles functional programming.

Some introductions to templates put a lot of emphasis on their ability to
perform arbitrary computations at compile-time. For instance, you can write a
template that computes the factorial function during C++ compilation, and it
might even output the result in compiler error messages for extra strangeness.
However, in the latest C++11 standard, constexpr functions already provide
compile-time functional computation. Here we will put greater emphasis to the
relation of templates to type parametrization than their compile-time compu-
tation aspect, sometimes called meta-programming.

3 Templates and type parameters

The basic idea of C++ templates is simple: we can make code depend on
parameters, so that it can be used in different situations by instantiating the
parameters as needed. In C, as in practically all programming languages, the
most basic form of code that takes a parameter is a function. For example,
consider this C function:

int square(int n)

{

return n * n;

}

3



Here the expression n * n has been made parametric in n. Hence we can apply
it to some integer, say

square(42)

Templates take the idea of parameterizing code much further. In particular, the
parameters may be types. For example, if F is a C++ template, it could be
instantiated with int as the type, as in

F<int>

A typical example is the standard library template vector. By instantiating it
with int, as in vecor<int>, we get a vector of integers.

Note the fundamental difference to the function square above. In the func-
tion, int is the type of the argument, whereas in F<int>, the argument is int
itself.

There are two kinds of templates in C++:

1. Class templates

2. Function templates

These correspond roughly to polymorphic data types and polymorphic functions
in functional languages.

To a first approximation, you can think of template instantiation as substi-
tution of the formal parameters by the actual arguments. Suppose we have a
template

template<typename T>

struct s {

... T ... T ...

};

Then instantiating the template with argument A replaces T with A in the tem-
plate body. That is, s<A> works much as if we had written a definition with the
arguments filled in:

struct sA {

... A ... A ...

};

The reality is more complex, but details may depend on the C++ implemen-
tation. A naive compiler may cause code bloat by creating and then compiling
lots of template instantiations s<A1>, s<A2>, s<A3>, . . . . It is an interesting
question how an optimizing compiler and/or a careful template programmer
may avoid this risk of potential code bloat. On the other hand, because the
argument replacement happens at compile time, there is no more overhead at
runtime. Templates can produce very efficient code, in keeping with the aim of
C++ to provide “zero-overhead” abstractions [Str12b].

In C, a similar form of replacement of parameters could be attempted using
the macro processor. Templates, however, are far more structured than macros,
which should be avoided in C++.

Readers who know λ-calculus may notice the similarity of template instanti-
ation to β-reduction via substitution: we may read template<typename T> as
analogous to λ T.

4



4 Parametric polymorphism

If you are familiar with a typed functional language such as OCAML [Ler13] or
Haskell, you have already seen parametric polymorphism. That will make C++
templates much easier to understand.

The type of lists is polymorphic. There is a type of integer lists, a type of
string lists, and so on. For example, here the OCAML compiler automatically
infers that [1; 2; 3] is a list of integers:

# [1; 2; 3];;

- : int list = [1; 2; 3]

Analogously, for a list of strings, we get:

# [ "foo"; "bar"; "qux" ];;

- : string list = ["foo"; "bar"; "qux"]

These examples are quite similar to vector<int> and vector<string> in C++.
Note, however, that in C++ we often have to give the type parameters (int
and string) explicitly rather than have the compiler infer them automatically.

When we define new types in OCAML, they may depend on a type parame-
ter. For example, here is a definition of binary tree trees where the leaves carry
data of type ’a.

type ’a bt = Leaf of ’a

| Internal of ’a bt * ’a bt;;

Such parametric type definitions correspond to template classes in C++.
Not only types but also function can be polymorphic. A standard example

is the function twice:

# let twice f x = f(f x);;

val twice : (’a -> ’a) -> ’a -> ’a = <fun >

Polymorphic datatypes and functions can be combined. For example, we have
both a polymorphic list type and functions like list reversal that operate on
them:

val rev : ’a list -> ’a list

As we will see, a polymorphic data type corresponds to a class template in C++,
which may be of the following form:

template <typename T>

struct S

{

// members here may depend on type parameter T

T data; // for example a data member

void f(T); // or a member function

using t = T; // or making t an alias for T

};

Similarly, a polymorphic definition of a function f may be of the following
form:

5



Click here to download full PDF material

https://www.computer-pdf.com/programming/c-cpp/257-tutorial-an-introduction-to-cpp-template-programming.html

