
Javascript Essentials
a Keyhole Software tutorial

This tutorial covers:

✔ JavaScript Execution Environment

✔ The structure of the JavaScript language

✔ The importance of Objects

✔ Prototypes and Inheritance

✔ Functions and Closures

✔ AJAX

If you've been developing enterprise web applications, it's likely that you have applied JavaScript in some

fashion - probably to validate user input with a JavaScript function that validates a form control, manipulate

an HTML document object model (DOM) for a user interface effect, or even to use AJAX to access the server

to eliminate a page refresh.

Single Page Application architectures allow rich, responsive application user interfaces to be developed.

There are many frameworks and approaches available, excluding plug-in technologies, that are JavaScript-

based. This means that developers need a deeper understanding of the JavaScript language features. This

tutorial assumes you have programming experience in a traditional object oriented language like Java or C#,

and introduces features of JavaScript that allows it to be a general purpose programming language. You may

be surprised by its expressiveness and object oriented capabilities.

Page 1 of 23

Keyhole Software, LLC. 8900 State Line Road, Suite 455 Leawood, KS 66206 Tel 877-521-7769 www.keyholesoftware.com

Copyright © 2013 Keyhole Software, LLC. All rights reserved.

TABLE OF CONTENTS

1. Environment ... 3
 Open Source Steps Up ..3

2. Modularity / Structure .. 4
 Memory ..4

Global Variables ..4

 Whitespace and Semicolons ...5

 Comments ..5

 Arithmetic Operators ..5

 == and === ...6

 Flow Control ..6

 Code Blocks ...6

Scope ..7

 AMD/CommonJS Module Specifications ...7

3. Data Types …... 7

 Primitive ...8

 Arrays ..8

 Array Operations ..8

 Undefined and Null …...9

4. Objects.. 9

 Built-In Objects ...10

 Creating Objects ..10

Literal Objects ..10

Constructor Function Objects ... 12

 Prototypes ..12

 Prototype Chaining / Inheritance ..13

Prototypes in Action – Implementing the singleton pattern......................14

5. Functions.. 15

 Anonymous/Closures ..16

 Memoizing ..16

 Execution Context .. 17

 Function Closures in Action and Modularity Support18

 Dependency Injection ...20

6. Exceptions/Errors... 20

 AJAX ..21

7. Summary... 22

Page 2 of 23

Keyhole Software, LLC. 8900 State Line Road, Suite 455 Leawood, KS 66206 Tel 877-521-7769 www.keyholesoftware.com

Copyright © 2013 Keyhole Software, LLC. All rights reserved.

1. ENVIRONMENT

One clue that JavaScript was not originally intended to be a general purpose language is the fact that a

browser is required to execute it. The snippet below shows how an HTML page loads a JavaScript function

defined inline. Normally this assumes the HTML page and JavaScript file reside on a web server.

Listing 1 – HTML page loading a JavaScript function

<script>

 function sayhello() {

 alert('hello world');

 }

</script>

...

<input type=”button” value=”say hello” onclick=”sayhello();”/>

The sayhello()function defined above can invoked and executed in a variety of ways, including:

1. Putting inline JavaScript tags at the beginning or end of the file when the HTML form button is

clicked.

2. Calling the function when a form button is clicked.

3. Putting <script> </script> elements at the beginning or end of an HTML document, depending on

the browser you're using.

4. Executing JavaScript on a page load using the jQuery framework.

As you can see, there is not any kind of main method or entry point mechanism like other languages, so a

browser and an HTML page load of some kind is required to execute JavaScript. Some server side Java

solutions have recently become available, but generally speaking JavaScript for UI development requires a

browser.

Open Source Steps Up

Luckily, innovations of the open source community have filled this need. Environments have been created

that allow JavaScript to be executed outside of a browser, commonly referred to as “headless,” or server side

JavaScript.

Node.js is one popular open source framework that provides a JavaScript runtime environment outside of

a browser. With Node.js, JavaScript can be executed from a command line or by specifying files. Node.js is

also available for most operating systems. Phantom.js is another viable option on the market. Although

similar, the intent of the headless environments is different between the two. Phantom.js has HTML DOM

(Document Object Model) available while Node.js does not. But both still provide a way to develop and test

code outside of a browser and web server. Here are links to these projects:

• Node – http://nodejs.org/

• Phantom – http://phantomjs.org/

The examples presented in this tutorial can all be typed into and executed with a headless JavaScript

environment. Assuming Node.js or Phantom.js binaries have been installed on your operating system, you

can execute the previous JavaScript file with the expressions that follow:

Page 3 of 23

Keyhole Software, LLC. 8900 State Line Road, Suite 455 Leawood, KS 66206 Tel 877-521-7769 www.keyholesoftware.com

Copyright © 2013 Keyhole Software, LLC. All rights reserved.

// Java Script defined // Executing with a node console

// in HelloWorld.js text file

function helloWorld() {

 console.log(“hello world”)

}

helloWorld();

// Execute JavaScript

$node helloworld.js

$phantomjs helloworld.js

Figure 1 – Executing JavaScript from the

command line

2. MODULARITY/STRUCTURE

JavaScript does not have a lot of structural elements like other languages. Part of this is due to its original

origins as a dynamic prototype-based language. Modularity is accomplished by partitioning JavaScript

functionality into separate files. Typically JavaScript libraries are defined in one giant file which can be painful

to maintain and comprehend.

Upcoming tutorials will present modularity workarounds that are necessary for developing large

applications with JavaScript, but it is still important to understand primitive JavaScript to establish a

foundation of understanding.

Memory

Like other object oriented languages, developers don't specifically need to worry about or perform allocation

and deallocation of memory. Since everything is an object that is dynamically created, the runtime

environment will utilize a garbage collection mechanism to reclaim objects that are no longer visible or

reachable by the current execution context.

In theory, developers should not to worry about memory reclaiming or leaks. However, there are ways

that object references become zombied or unreachable by the garbage collector. Closures are one way object

references can become unreachable causing a memory leak.

GLOBAL VARIABLES

When a page with JavaScript is loaded, objects and variables created and defined with the page consume

memory. The garbage collector will track and reclaim memory by objects that are no longer referenced by

anything. However there is a way for global objects to be defined that is visible during the lifetime of the

browser executable that JavaScript is executing within. A runtime window variable is visible that references a

globally available object. You can freely add/attach objects to the window variable. The following code shows

an example of a global variable definition.

window.userId = "jdoe"; ← Global Variable

var userId = "jdoe; ← Local Variable

It's important to note that if you define a variable without VAR, then it's attached to the global window

object. The following code shows this:

userId = "jdoe"; ← Attached to Window

BEST PRACTICE: You should rarely need to define global variables by attaching to the window property. For a

Single Page Application, most frameworks will provide a pattern for defining global objects.

Page 4 of 23

Keyhole Software, LLC. 8900 State Line Road, Suite 455 Leawood, KS 66206 Tel 877-521-7769 www.keyholesoftware.com

Copyright © 2013 Keyhole Software, LLC. All rights reserved.

Whitespace and Semicolons

Previous tutorials have described the origins of JavaScript and pointed out its features as a dynamic object-

based language. The name “JavaScript” likely came to be due the similarity with the Java syntax. Like Java,

JavaScript syntax is simple, free form, and case sensitive. Expressions are terminated with a semicolons.

Listing 2 – An example of JavaScript syntax

var abc = 'a' + 'b' + 'c';

var def =

 'd' +

 'e' +

 'f';

console.log(abc + def);

Semicolons are required to terminate expressions, but JavaScript cuts slack to lazy developers who forget

to terminate their expressions with semicolons. However, it's best practice to always terminate expressions

with a semicolon.

Comments

Comments are non executable lines of code that can be applied to help document your code. Block and line

comments can be defined.

/*

 Block comments

*/

...

// line comments

...

var a = "abc"; // end of line comment

Arithmetic Operators

Available operators are as you would expect for arithmetic operations (+, -, /, %). The + is overloaded to

support string concatenation. Unary increment and decrement operators are supported in the same fashion

as C, C#, and Java. Listing 3 shows some example operators in action.

Listing 3 – An example of arithmetic operators

var count = 5; ← Increment/decrement
console.log(--count); // logs 4

console.log(++count); // logs 5

console.log(count--); // logs 4

console.log(count++); // logs 5

var x = 5; ← Assignment
var y+= 5; // y = 10;

var y-= 5; // y = 5;

var y*= 5; // y = 25;

var y/= 5; // y = 5;

var s1 = "hello"; ← String Concatenation
var s2 = "world";

var s3 = s1 + s2;

Page 5 of 23

Keyhole Software, LLC. 8900 State Line Road, Suite 455 Leawood, KS 66206 Tel 877-521-7769 www.keyholesoftware.com

Copyright © 2013 Keyhole Software, LLC. All rights reserved.

Click here to download full PDF material

https://www.computer-pdf.com/web-programming/javascript/275-tutorial-javascript-essentials.html

