2.
Optimizing subroutines in assembly

language
An optimization guide for x86 platforms

By Agner Fog. Technical University of Denmark.
Copyright © 1996 - 2015. Last updated 2015-12-23.

Contents
LI a1 (0T 11 ez 1T o I PP PPPPPP 4
1.1 Reasons for using assembly COAEuueiiiiiiiiiiiiiiee e 5
1.2 Reasons for not using assembly COAEooiiiiiiiiiiii e 5
1.3 Operating systems covered by this manual.............ccccceiiiiii e 6
2 BefOre YOU STAN ...t a e e e 7
2.1 Things to decide before you start programmingccccuvmeriiieeiiiiiiiieeee e 7
2.2 Make atest Strategy.......ccouuiiiiiiiii 8
2.3 Common COAING PItFaAllSceeiiiiiiiiee e 9
3 The basics of asSembly COING.......uuiiiiiiiiiii e 11
3.1 Assemblers available ... 11
3.2 Register set and basic iNSrUCHONS..........coovviiiiiiiiee e 14
3.3 AdAreSSING MOAES ...ttt e e e e e e e e e e e e e e e s rreeaeeeeaaaaas 18
3.4 InStruction COAE fOrMALceiiiiiiiiie e 25
3.5 INSHrUCHION PrefiXES. ..o 26
4 ABI STANTAIAS. ...t a e e e e e e eens 27
4.1 REQISTEN USAQE. .. i it ittt ettt e e e e e e e e e e e e e e e e e e 28
4.2 Data StOrage ..o e e 28
4.3 Function calling CONVENLIONScooiiiiiiiiic e 29
4.4 Name mangling and name deCorationccuureereiieiiiiiie e 30
4.5 FUNCLION €XaMPIES...cciiiiiiiii 31
5 Using intrinSiC fUNCHONS IN G ...evviiiiiiee e e e e e 34
5.1 Using intrinsic functions for system COdeuueiiiiiiiiiiiiiiee e 35
5.2 Using intrinsic functions for instructions not available in standard C++cc........ 36
5.3 Using intrinsic functions for vector operations ... 36
5.4 Availability of intrinSiC fUNCHONSuiiiiii e 36
6 USING INNINE @SSEMIDIY ...t a e e e e e 36
6.1 MASM style inline assembIyoooiiii e 37
6.2 Gnu style inline aSSEMDIY ... 42
6.3 Inline assembly in Delphi PascCal............oooiiiiiiiii e 45
7 USING @N @SSEMDIE ... i 45
7.1 Static INK lDFariEsSueeeeeeeee e e 46
7.2 DyNamiC liNK TIDFAMIESeeeeiiiiieee e 47
7.3 Libraries in SOUrce Code fOIMeiiiii i 48
7.4 Making classes in @aSSembDIY ..o 49
7.5 Thread-safe fUNCHONS ..o 50
7.8 MAKETIES ..ot e e 51
8 Making function libraries compatible with multiple compilers and platforms.................... 52
8.1 Supporting multiple name mangling SChemes.............ccccccviiiiiiiic e, 52
8.2 Supporting multiple calling conventions in 32 bit modecoovvveveviiiiiiieiiieeeeeeeeee 53
8.3 Supporting multiple calling conventions in 64 bit modeccoevvveviviiiiiiiiiieiieeeeeee 56
8.4 Supporting different object file formats ... 58
8.5 Supporting other high level [anguagesooouuiiiiiiiiii e 59
9 OPtiMIZING fOr SPEEAeeeiiiii it e e e e e e eeaeens 60
9.1 Identify the most critical parts of your code ... 60

9.2 OUL Of OrAEBI EXECULION <.t 60

9.3 Instruction fetch, decoding and retirement ... 63

9.4 Instruction latency and throUughPULoooo i 64
9.5 Break dependencCy CRaINS.........oooeiiiiiieiie e e 65
9.6 JUMPS @NA CAIIS ..t e e e e e 66
10 OPLMIZING fOF SIZE ... et e et ree e 73
10.1 Choosing shorter iINSTrUCHIONS..........coiiiiiiie e 73
10.2 Using shorter constants and addreSSESccooviiiiiiiiiiiiieeeeeriieee e 75
10.3 REUSING CONSTANTS ..ot e e 76
10.4 Constants in B4-Dit MOTEoooiiiiiiii e 76
10.5 Addresses and pointers in 64-bit MOAEooiiiiiiiiiii e 77
10.6 Making instructions longer for the sake of alignment..............ccco. 79
10.7 Using multi-byte NOPs for alignmentccueiiiiiiiiie e 81
11 OPtiMmIZING MEMOIY ACCESS. ... it iiiiiitieiie e ettt e e e e st e e e e e e e s e e e e e e e e e e e e annneeees 82
11,1 HOW CaCNING WOIKS ...ttt e e eeaeeas 82
1.2 TrACE CACKNE ...t e e e e e eeeens 83
1.8 HOP CACKNE ...t e e e a e 83
11.4 AlIGNMENt Of datal..cccooo i 84
11.5 AlIGNMENT OF COUR ..o e e 86
11.6 Organizing data for improved CaChingcouiiiiiiiiiiiie e 88
11.7 Organizing code for improved CaChingooiiiiiiiiiiiiieeee e 88
11.8 Cache CONtrol INSITUCTIONSeeiiiiii e 89
L2 o o] o - TP PP PPRPPP R PPPI 89
12.1 MiNimMize |00 OVEINEAAuiiiiiiiiiiiiiiiiiiietetiieeeieiee et seeeeeeannnennensennnnes 89
12.2 INAUCTION VANADIES ...ttt seseseennnnessnnssnnnnes 92
12.3 MoVe [00P-INVANANT COUEuuiiiiiiiiiiiiiiei et e s 93
12.4 Find the DOENECKS ... 93
12.5 Instruction fetch, decoding and retirement in @ 100Pcoooovviiiiiiiiiiiiieiiieee 94
12.6 Distribute pops evenly between execution UNItS..............ueeeuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieanns 94
12.7 An example of analysis for bottlenecks in vector loopscccveeeveeeiiiiiiiiiiiieeee. 95
12.8 Same example 0N COrE2ooiiiiiiiiiiieieee e 98
12.9 Same example on Sandy Bridge..........uueiiiiiiiiiiiiiie e 100
12.10 Same example With FMAZ ... 101
12.11 Same example With FMAS ... 101
L2 P2 o To MU] g1 (] | 1 0 To [PPSO PO PPRPPRORRRPRPRRRN: 102
12.13 Vector loops using mask registers (AVX512)ouviiiiiiiiiiiiiiieeeeeeeieeeeee 104
12.14 OPtIMIZE CACNING i iiiiieee et e e e e e ns 105
12.15 ParalleliZationueeeeeiiiiiiiiiiiiiiiiieieeee ettt eee e nnnnnnnennnna 106
12.16 ANAlYZING AEPENUENCESuviiieiiiiiiiiiiiitiiiieteeeeteeeeeeeeeeseeeeeeeeseeaeessseeenensnnnnnnesnnnnnes 107
12.17 Loops on processors without out-of-order executioncceeeeveeeiiiiiiiiineeenenn. 111
LR R R\ F= Te do B (Lo o 1< TSP PO PPRPRRRRRRPTRN 113
13 VECTOr ProgrammMingccooiiieiieee e 115
13.1 Conditional moves in SIMD regiStersouiiiiiiiiiieiie e 116
13.2 Using vector instructions with other types of data than they are intended for 119
13.3 ShUfliNG LA ...eeeeiieeee e 121
13.4 Generating CONSTANTSuuiiiiiiie e 125
13.5 Accessing unaligned data and partial VECIOrSeueeveeiiiiiiiiiiiiiiiiiiiiiiiiiieieeees 127
13.6 Using AVX instruction set and YMM regiStersuuuuuuuiumiiiimmmmiimiiiiiiiiiiiieiennnnnnns 131
13.7 Vector operations in general purpose regiSterscuuviiiiiiirririeeeeeieieireeeeeeen 136
14 MURIENIEAAING ..o e e e e e e e e nneeees 138
LT I o)Y o1 g T =T Lo [0 To IR PRSP 138
15 CPU diSPALCNING. ...ttt e e e 139
15.1 Checking for operating system support for XMM and YMM registers 140
16 Problematic INSTrUCHIONSooo i 141
16.1 LEA INSTrUCLION (Il PrOCESSOIS)..uuuuriiurrrirriiiiririnerinnnnnninnnesnssnsnessnnnsnsnesnsnsnnnnnnnnnnnnne 141
16.2 INC @NA DEC ...ttt e e e e e et e e e e e e e s nnnraeeeeaeens 142
16.3 XCHG (All PrOCESSOIS) .uuuuiiiiiiiiiee ettt e e e e e e e e e e e s e e eea e s 143
16.4 Shifts and rotates (P4)ueeeeiiiee e 143
16.5 Rotates through carry (all PrOCESSOIS)uuuuuuruuurrrrerrrririrerierinneeenreennnennreneenenneeneae.. 143

16.6 Bit tESt (Qll PrOCESSOIS) evvuerieiiurirrariierriereertreeereneseneeeeeseneeeensnennennennnnnensennnnnnnnennnnnnns 143

16.7 LAHF and SAHF (Qll PrOCESSOIS) ...uuuuiiiiiiieeeeeiiiiiieiee e eneeeee e 143
16.8 Integer multiplication (all ProCESSOIS)uuiiiiiiiiiiiiiiieee e 143
16.9 DiIVISION (Al PrOCESSOIS) ...uuieeiiiiieeiiiiiiitee et e e ettt e e e st e e e e e e e s nrreeeeea e s 143
16.10 String iNStructions (All PrOCESSOIS) ...uuuurriiiieeiiiiiiiiieieee e e e e eereeer e e e e e senreeeeeeeeas 147
16.11 Vectorized string instructions (processors with SSE4.2)..........ccccceveeiviiiiiiiiennnnnn. 147
16.12 WAIT instruction (all PrOCESSOIS)uuvieiiiiiiiiiiiieeiee et 148
16.13 FCOM + FSTSW AX (Qll PrOCESSOIS) ..veeiiieeeiiiiiiiiieieeaaaeeeaaiisreeeeeeeeeeesannnseeeeaeeens 149
16.14 FPREM (QIl PrOCESSOIS) ..vvvvvvuuuruueruruenrennnnnnnsnnnssnnnnnnnnnnnnnnnnnsnssnnsssnnsssssnssnnnnsnssnnnnns 150
16.15 FRNDINT (Gl PrOCESSOIS) ..ceeiiieiiiiiiiiiieiiiie ettt e e 150
16.16 FSCALE and exponential function (all proCceSSors)ooceuevieeeeieeiieiiiiiiieeeeenn. 150
16.17 FPTAN (Qll PrOCESSOIS) ...euuvutuuuruurrurrenennnnnennnsnnnsnnnnnnnnnnnnnnsnnssssnnsnsnssssssnsssnsnssnssnnnns 152
16.18 FSQRT (SSE PrOCESSOIS) ..cceiiiiiiiiiiiiieiiiiae e ettt e e ea e 152
16.19 FLDCW (MOSt INtel PrOCESSOIS)uuueiiiiiiieeee ettt 152
16.20 MASKMOV iNSTIUCHIONS.eiiiiiiieii ettt 153
17 SPECIAI TOPICS ...ttt e e e e e e nnn s 153
17.1 XMM versus floating point regiSters ... 153
17.2 MMX versus XMM regiSTErSccoiiiiiiiiiieieee e 154
17.3 XMM Versus YMM FregiSIErsScooiiiiiiiiiiiiiie et 154
17.4 Freeing floating point registers (all ProCeSSOrS)uueuuuiiiiiiiiiiiiiiiieee e 155
17.5 Transitions between floating point and MMX inStructionsevvvveeeiiiiinnnnnnes 155
17.6 Converting from floating point to integer (All ProCesSOrs)uuvveeeeeeriiiiiiiineeeeenn. 155
17.7 Using integer instructions for floating point operationsccccceeveiiiniiiiiiieeenenn. 157
17.8 Using floating point instructions for integer operationscccceeeveeiiniiiiiieeeenenn. 160
17.9 Moving blocks of data (All PrOCESSOIS)cuuuiiiiiiiiiiiiieeee et 160
17.10 Self-modifying code (All PrOCESSOIS)uriiiiiiiiiiiiiieieee et 163
18 Measuring PEIfOIMANCE.u ittt e e e e e e e e e e anneeees 163
18.1 TESHNG SPEEA ...ttt eseseasessseessssessssssnsnsnsnsnnnnnns 163
18.2 The pitfalls Of UNIt-teSTINGvvreeiieiiii e 165
TG LITEIatUNE .. 165
20 COPYIGNT NOLICE ...t e e e e e e e e e e eeaeas 166

1 Introduction
This is the second in a series of five manuals:

1. Optimizing software in C++: An optimization guide for Windows, Linux and Mac
platforms.

2. Optimizing subroutines in assembly language: An optimization guide for x86
platforms.

3. The microarchitecture of Intel, AMD and VIA CPUs: An optimization guide for
assembly programmers and compiler makers.

4. Instruction tables: Lists of instruction latencies, throughputs and micro-operation
breakdowns for Intel, AMD and VIA CPUs.

5. Calling conventions for different C++ compilers and operating systems.

The latest versions of these manuals are always available from www.agner.org/optimize.
Copyright conditions are listed on page 166 below.

The present manual explains how to combine assembly code with a high level programming
language and how to optimize CPU-intensive code for speed by using assembly code.

This manual is intended for advanced assembly programmers and compiler makers. It is
assumed that the reader has a good understanding of assembly language and some
experience with assembly coding. Beginners are advised to seek information elsewhere and
get some programming experience before trying the optimization techniques described
here. | can recommend the various introductions, tutorials, discussion forums and
newsgroups on the Internet (see links from www.agner.org/optimize) and the book
"Introduction to 80x86 Assembly Language and Computer Architecture" by R. C. Detmer, 2.
ed. 2006.

The present manual covers all platforms that use the x86 and x86-64 instruction set. This
instruction set is used by most microprocessors from Intel, AMD and VIA. Operating
systems that can use this instruction set include DOS, Windows, Linux, FreeBSD/Open
BSD, and Intel-based Mac OS. The manual covers the newest microprocessors and the
newest instruction sets. See manual 3 and 4 for details about individual microprocessor
models.

Optimization techniques that are not specific to assembly language are discussed in manual
1: "Optimizing software in C++". Details that are specific to a particular microprocessor are
covered by manual 3: "The microarchitecture of Intel, AMD and VIA CPUs". Tables of
instruction timings etc. are provided in manual 4: "Instruction tables: Lists of instruction
latencies, throughputs and micro-operation breakdowns for Intel, AMD and VIA CPUs".
Details about calling conventions for different operating systems and compilers are covered
in manual 5: "Calling conventions for different C++ compilers and operating systems".

Programming in assembly language is much more difficult than high-level language. Making
bugs is very easy, and finding them is very difficult. Now you have been warned! Please
don't send your programming questions to me. Such mails will not be answered. There are
various discussion forums on the Internet where you can get answers to your programming
questions if you cannot find the answers in the relevant books and manuals.

Good luck with your hunt for nanoseconds!

http://www.agner.org/optimize
http://www.agner.org/optimize

1.1 Reasons for using assembly code

Assembly coding is not used as much today as previously. However, there are still reasons
for learning and using assembly code. The main reasons are:

1. Educational reasons. It is important to know how microprocessors and compilers
work at the instruction level in order to be able to predict which coding techniques
are most efficient, to understand how various constructs in high level languages
work, and to track hard-to-find errors.

2. Debugging and verifying. Looking at compiler-generated assembly code or the
disassembly window in a debugger is useful for finding errors and for checking how
well a compiler optimizes a particular piece of code.

3. Making compilers. Understanding assembly coding techniques is necessary for
making compilers, debuggers and other development tools.

4. Embedded systems. Small embedded systems have fewer resources than PC's and
mainframes. Assembly programming can be necessary for optimizing code for speed
or size in small embedded systems.

5. Hardware drivers and system code. Accessing hardware, system control registers
etc. may sometimes be difficult or impossible with high level code.

6. Accessing instructions that are not accessible from high level language. Certain
assembly instructions have no high-level language equivalent.

7. Self-modifying code. Self-modifying code is generally not profitable because it
interferes with efficient code caching. It may, however, be advantageous for example
to include a small compiler in math programs where a user-defined function has to
be calculated many times.

8. Optimizing code for size. Storage space and memory is so cheap nowadays that it is
not worth the effort to use assembly language for reducing code size. However,
cache size is still such a critical resource that it may be useful in some cases to
optimize a critical piece of code for size in order to make it fit into the code cache.

9. Optimizing code for speed. Modern C++ compilers generally optimize code quite well
in most cases. But there are still cases where compilers perform poorly and where
dramatic increases in speed can be achieved by careful assembly programming.

10. Function libraries. The total benefit of optimizing code is higher in function libraries
that are used by many programmers.

11. Making function libraries compatible with multiple compilers and operating systems.
It is possible to make library functions with multiple entries that are compatible with
different compilers and different operating systems. This requires assembly
programming.

The main focus in this manual is on optimizing code for speed, though some of the other
topics are also discussed.

1.2 Reasons for not using assembly code

There are so many disadvantages and problems involved in assembly programming that it
is advisable to consider the alternatives before deciding to use assembly code for a
particular task. The most important reasons for not using assembly programming are:

Click here to download full PDF material

https://www.computer-pdf.com/programming/434-tutorial-optimizing-subroutines-in-assembly-language.html

