
Introduction

Page 1

4. Instruction tables

By Agner Fog. Technical University of Denmark.

Copyright © 1996 – 2016. Last updated 2016-01-09.

Introduction 
This is the fourth in a series of five manuals:

2. Optimizing subroutines in assembly language: An optimization guide for x86 platforms. 

5. Calling conventions for different C++ compilers and operating systems.

Copyright notice 

Lists of instruction latencies, throughputs and micro-operation breakdowns for Intel, AMD 
and VIA CPUs

1. Optimizing software in C++: An optimization guide for Windows, Linux and Mac 
platforms.

3. The microarchitecture of Intel, AMD and VIA CPUs: An optimization guide for assembly 
programmers and compiler makers. 

4. Instruction tables: Lists of instruction latencies, throughputs and micro-operation 
breakdowns for Intel, AMD and VIA CPUs. 

The latest versions of these manuals are always available from www.agner.org/optimize.
Copyright conditions are listed below.

The present manual contains tables of instruction latencies, throughputs and micro-operation 
breakdown and other tables for x86 family microprocessors from Intel, AMD and VIA.

The figures in the instruction tables represent the results of my measurements rather than the offi-
cial values published by microprocessor vendors. Some values in my tables are higher or lower 
than the values published elsewhere. The discrepancies can be explained by the following factors:

● My figures are experimental values while figures published by microprocessor vendors may be 
based on theory or simulations.

● My figures are obtained with a particular test method under particular conditions. It is possible that 
different values can be obtained under other conditions.

● Some latencies are difficult or impossible to measure accurately, especially for memory access 
and type conversions that cannot be chained.

● Latencies for moving data from one execution unit to another are listed explicitly in some of my 
tables while they are included in the general latencies in some tables published by Intel.

Most values are the same in all microprocessor modes (real, virtual, protected, 16-bit, 32-bit, 64-bit). 
Values for far calls and interrupts may be different in different modes. Call gates have not been 
tested.

Instructions with a LOCK prefix have a long latency that depends on cache organization and possi-
bly RAM speed. If there are multiple processors or cores or direct memory access (DMA) devices 
then all locked instructions will lock a cache line for exclusive access, which may involve RAM ac-
cess. A LOCK prefix typically costs more than a hundred clock cycles, even on single-processor 
systems. This also applies to the XCHG instruction with a memory operand.

If any text in the pdf version of this manual is unreadable, then please refer to the spreadsheet ver-
sion.



Introduction

Page 2

This series of five manuals is copyrighted by Agner Fog. Public distribution and mirroring is not 
allowed. Non-public distribution to a limited audience for educational purposes is allowed. The code 
examples in these manuals can be used without restrictions. A GNU Free Documentation License 
shall automatically come into force when I die. See www.gnu.org/copyleft/fdl.html



Definition of terms

Page 3

Definition of terms

Instruction

Operands

Latency

The instruction name is the assembly code for the instruction. Multiple instructions or 
multiple variants of the same instruction may be joined into the same line. Instructions 
with and without a 'v' prefix to the name have the same values unless otherwise 
noted.

Operands can be different types of registers, memory, or immediate constants. Ab-
breviations used in the tables are: i = immediate constant, r = any general purpose 
register, r32 = 32-bit register, etc., mm = 64 bit mmx register, x or xmm = 128 bit xmm 
register, y = 256 bit ymm register, z = 512 bit zmm register, v = any vector register, sr 
= segment register, m = any memory operand including indirect operands, m64 
means 64-bit memory operand, etc.

The latency of an instruction is the delay that the instruction generates in a depen-
dency chain. The measurement unit is clock cycles. Where the clock frequency is var-
ied dynamically, the figures refer to the core clock frequency. The numbers listed are 
minimum values. Cache misses, misalignment, and exceptions may increase the 
clock counts considerably. Floating point operands are presumed to be normal num-
bers. Denormal numbers, NAN's and infinity may increase the latencies by possibly 
more than 100 clock cycles on many processors, except in move, shuffle and Boolean 
instructions. Floating point overflow, underflow, denormal or NAN results may give a 
similar delay. A missing value in the table means that the value has not been mea-
sured or that it cannot be measured in a meaningful way.

Some processors have a pipelined execution unit that is smaller than the largest regis-
ter size so that different parts of the operand are calculated at different times. As-
sume, for example, that we have a long depencency chain of 128-bit vector instruc-
tions running in a fully pipelined 64-bit execution unit with a latency of 4. The lower 64 
bits of each operation will be calculated at times 0, 4, 8, 12, 16, etc. And the upper 64 
bits of each operation will be calculated at times 1, 5, 9, 13, 17, etc. as shown in the 
figure below. If we look at one 128-bit instruction in isolation, the latency will be 5. But 
if we look at a long chain of 128-bit instructions, the total latency will be 4 clock cycles 
per instruction plus one extra clock cycle in the end. The latency in this case is listed 
as 4 in the tables because this is the value it adds to a dependency chain.

Reciprocal 
throughput

The throughput is the maximum number of instructions of the same kind that can be 
executed per clock cycle when the operands of each instruction are independent of 
the preceding instructions. The values listed are the reciprocals of the throughputs, 
i.e. the average number of clock cycles per instruction when the instructions are not 
part of a limiting dependency chain. For example, a reciprocal throughput of 2 for 
FMUL means that a new FMUL instruction can start executing 2 clock cycles after a 
previous FMUL. A reciprocal throughput of 0.33 for ADD means that the execution 
units can handle 3 integer additions per clock cycle.

The reason for listing the reciprocal values is that this makes comparisons between la-
tency and throughput easier. The reciprocal throughput is also called issue latency.



Definition of terms

Page 4

μops

How the values were measured

The values listed are for a single thread or a single core. A missing value in the table 
means that the value has not been measured.

Uop or μop is an abbreviation for micro-operation. Processors with out-of-order cores 
are capable of splitting complex instructions into μops. For example, a read-modify in-
struction may be split into a read-μop and a modify-μop. The number of μops that an 
instruction generates is important when certain bottlenecks in the pipeline limit the 
number of μops per clock cycle.

Execution 
unit

The execution core of a microprocessor has several execution units. Each execution 
unit can handle a particular category of μops, for example floating point additions. The 
information about which execution unit a particular μop goes to can be useful for two 
purposes. Firstly, two μops cannot execute simultaneously if they need the same exe-
cution unit. And secondly, some processors have a latency of an extra clock cycle 
when the result of a μop executing in one execution unit is needed as input for a μop 
in another execution unit.

Execution 
port

The execution units are clustered around a few execution ports on most Intel proces-
sors. Each μop passes through an execution port to get to the right execution unit. An 
execution port can be a bottleneck because it can handle only one μop at a time. Two 
μops cannot execute simultaneously if they need the same execution port, even if 
they are going to different execution units.

Instruction 
set

This indicates which instruction set an instruction belongs to. The instruction is only 
available in processors that support this instruction set. The different instruction sets 
are listed at the end of this manual. Availability in processors prior to 80386 does not 
apply for 32-bit and 64-bit operands. Availability in the MMX instruction set does not 
apply to 128-bit packed integer instructions, which require SSE2. Availability in the 
SSE instruction set does not apply to double precision floating point instructions, 
which require SSE2.

32-bit instructions are available in 80386 and later. 64-bit instructions in general pur-
pose registers are available only under 64-bit operating systems. Instructions that use 
XMM registers (SSE and later) are only available under operating systems that sup-
port this register set. Instructions that use YMM registers (AVX and later) are only 
available under operating systems that support this register set.

The values in the tables are measured with the use of my own test programs, which are available 
from www.agner.org/optimize/testp.zip 

The time unit for all measurements is CPU clock cycles. It is attempted to obtain the highest clock 
frequency if the clock frequency is varying with the workload. Many Intel processors have a perfor-
mance counter named "core clock cycles". This counter gives measurements that are independent 
of the varying clock frequency. Where no "core clock cycles" counter is available, the "time stamp 
counter" is used (RDTSC instruction). In cases where this gives inconsistent results (e.g. in AMD 
Bobcat) it is necessary to make the processor boost the clock frequency by executing a large num-
ber of instructions (> 1 million) or turn off the power-saving feature in the BIOS setup.

Instruction throughputs are measured with a long sequence of instructions of the same kind, where 
subsequent instructions use different registers in order to avoid dependence of each instruction on 
the previous one. The input registers are cleared in the cases where it is impossible to use different 
registers. The test code is carefully constructed in each case to make sure that no other bottleneck 
is limiting the throughput than the one that is being measured.

Instruction latencies are measured in a long dependency chain of identical instructions where the 
output of each instruction is needed as input for the next instruction.



Definition of terms

Page 5

The sequence of instructions should be long, but not so long that it doesn't fit into the level-1 code 
cache. A typical length is 100 instructions of the same type. This sequence is repeated in a loop if a 
larger number of instructions is desired.

It is not possible to measure the latency of a memory read or write instruction with software methods. 
It is only possible to measure the combined latency of a memory write followed by a memory read 
from the same address. What is measured here is not actually the cache access time, because in 
most cases the microprocessor is smart enough to make a "store forwarding" directly from the write 
unit to the read unit rather than waiting for the data to go to the cache and back again. The latency of 
this store forwarding process is arbitrarily divided into a write latency and a read latency in the tables. 
But in fact, the only value that makes sense to performance optimization is the sum of the write time 
and the read time.

A similar problem occurs where the input and the output of an instruction use different types of regis-
ters. For example, the MOVD instruction can transfer data between general purpose registers and 
XMM vector registers. The value that can be measured is the combined latency of data transfer from 
one type of registers to another type and back again (A → B → A). The division of this latency be-
tween the A → B latency and the B → A latency is sometimes obvious, sometimes based on guess-
work, µop counts, indirect evidence, or triangular sequences such as A → B → Memory → A. In 
many cases, however, the division of the total latency between A → B latency and B → A latency is 
arbitrary. However, what cannot be measured cannot matter for performance optimization. What 
counts is the sum of the A → B latency and the B → A latency, not the individual terms.

The µop counts are usually measured with the use of the performance monitor counters (PMCs) that 
are built into modern microprocessors. The PMCs for VIA processors are undocumented, and the in-
terpretation of these PMCs is based on experimentation.

The execution ports and execution units that are used by each instruction or µop are detected in dif-
ferent ways depending on the particular microprocessor. Some microprocessors have PMCs that 
can give this information directly. In other cases it is necessary to obtain this information indirectly by 
testing whether a particular instruction or µop can execute simultaneously with another 
instruction/µop that is known to go to a particular execution port or execution unit. On some proces-
sors, there is a delay for transmitting data from one execution unit (or cluster of execution units) to 
another. This delay can be used for detecting whether two different instructions/µops are using the 
same or different execution units.



Click here to download full PDF material

https://www.computer-pdf.com/architecture/436-tutorial-instruction-tables.html

