
5.
Calling conventions

for different C++ compilers and operating systems

By Agner Fog. Technical University of Denmark.
Copyright © 2004 - 2015. Last updated 2015-12-23.

Contents
1 Introduction ... 3

2 The need for standardization ... 5

3 Data representation ... 6

4 Data alignment .. 8

5 Stack alignment ... 9

6 Register usage .. 10

6.1 Can floating point registers be used in 64-bit Windows? ... 13

6.2 YMM vector registers .. 14

6.3 ZMM vector registers .. 15

6.4 Register usage in kernel code ... 15

7 Function calling conventions ... 16

7.1 Passing and returning objects ... 20

7.2 Passing and returning SIMD types .. 23

8 Name mangling ... 25

8.1 Microsoft name mangling .. 29

8.2 Borland name mangling .. 34

8.3 Watcom name mangling ... 35

8.4 Gnu2 name mangling .. 36

8.5 Gnu3-4 name mangling .. 38

8.6 Intel name mangling for Windows ... 40

8.7 Intel name mangling for Linux ... 41

8.8 Symantec and Digital Mars name mangling .. 41

8.9 Codeplay name mangling ... 41

8.10 Other compilers .. 42

8.11 Turning off name mangling with extern "C" ... 42

8.12 Conclusion .. 43

9 Exception handling and stack unwinding ... 43

10 Initialization and termination functions ... 44

11 Virtual tables and runtime type identification .. 44

12 Communal data ... 45

13 Memory models ... 45

13.1 16-bit memory models .. 45

13.2 32-bit memory models .. 46

13.3 64-bit memory models in Windows ... 46

13.4 64-bit memory models in Linux and BSD .. 46

13.5 64-bit memory models in Intel-based Mac (Darwin) .. 46

14 Relocation of executable code ... 47

14.1 Import tables ... 49

15 Object file formats ... 49

15.1 OMF format... 49

15.2 COFF format ... 50

15.3 ELF format .. 51

15.4 Mach-O format .. 51

15.5 a.out format... 52

15.6 Comparison of object file formats .. 52

15.7 Conversion between object file formats ... 52

15.8 Intermediate file formats ... 52

 2

16 Debug information ... 53

17 Data endian-ness .. 53

18 Predefined macros .. 53

19 Available C++ Compilers ... 55

19.1 Microsoft ... 55

19.2 Borland ... 55

19.3 Watcom .. 55

19.4 Gnu ... 55

19.5 Clang .. 55

19.6 Digital Mars ... 55

19.7 Codeplay .. 55

19.8 Intel ... 55

20 Literature ... 56

20.1 ABI's for Unix, Linux, BSD and Mac OS X (Intel-based). ... 56

20.2 ABIs for Windows.. 56

20.3 Object file format specifications ... 57

21 Copyright notice .. 57

22 Acknowledgments ... 57

 3

1 Introduction
This is the fifth in a series of five manuals:

1. Optimizing software in C++: An optimization guide for Windows, Linux and Mac
platforms.

2. Optimizing subroutines in assembly language: An optimization guide for x86
platforms.

3. The microarchitecture of Intel, AMD and VIA CPUs: An optimization guide for
assembly programmers and compiler makers.

4. Instruction tables: Lists of instruction latencies, throughputs and micro-operation
breakdowns for Intel, AMD and VIA CPUs.

5. Calling conventions for different C++ compilers and operating systems.

The latest versions of these manuals are always available from www.agner.org/optimize.
Copyright conditions are listed on page 57 below.

The present manual describes differences between various C++ compilers that affect binary
compatibility, such as data storage, function calling conventions, and name mangling. The
function calling methods, name mangling schemes, etc. are described in detail for each
compiler.

The purposes of publishing this information are:

 Point out incompatibilities between compilers.

 Make new compilers compatible with old ones.

 Solve compatibility problems between function libraries produced by different
compilers.

 Facilitate linking different programming languages together.

 Facilitate the making of assembly subroutines that are compatible with multiple
compilers and multiple operating systems.

 Solve compatibility problems for data stored in binary files.

 Facilitate the construction of debugging, profiling and disassembly tools.

 Facilitate the construction of object file conversion utilities.

 Provoke compiler vendors to use open standards.

 Inspire future standardization.

Hardware platforms covered:

 x86 microprocessors with 16 bit, 32 bit and 64 bit architectures from Intel, AMD, VIA
and possibly other vendors.

http://www.agner.org/optimize

 4

The IA64 architecture, which is implemented in Intel's Itanium processor, is not compatible
with the x86 architecture, and is not covered in this report.

Operating systems covered:

 DOS, 16 bit.

 Windows, 16 bit, 32 bit and 64 bit.

 Linux, 32 bit and 64 bit.

 FreeBSD etc. 32 bit and 64 bit.

 Mac OS X, Intel based, 32 bit and 64 bit.

C++ compilers tested:

 Borland, 16 bit v. 3.0 and 5.0

 Microsoft, 16 bit, v. 8.0

 Watcom, 16 bit v. 1.2

 Borland 32 bit v. 5.0

 Microsoft, 32 bit, v. 9.0 and 13.10

 Gnu, 32 bit, v. 2.95, 3.3.3, 4.1.0 and several other versions under Linux, FreeBSD
and Windows.

 Watcom, 32 bit, v. 1.2

 Symantec, 32 bit, v. 7.5

 Digital Mars, 32 bit, v. 8.3.8

 Codeplay VectorC, 32bit, v. 2.1.7

 Intel, 32 bit for Windows and Linux, v. 8.1 and 9.1

 Microsoft, 64 bit, v. 14.00

 Gnu, 64 bit, v. 3.3.3 and 4.1.0 (Linux and FreeBSD)

 Intel, 64 bit for Windows and Linux, v. 8.1 and 9.1

This document provides information that is typically difficult to find. The documentation of
calling conventions and binary interfaces of compilers and operating systems is often
shamefully poor and sometimes completely absent. Name mangling schemes are rarely
documented. For example, it is stated in Microsoft Knowledge Base that "Microsoft does not
publish the algorithm its compilers use for name decoration because it may change in the
future." (article number Q126845). However, the name mangling scheme has not changed
much from the old 16-bit compiler to the newest 32-bit and 64-bit compilers, and it is unlikely
to be changed in the future because of compatibility requirements.

As most of the information given here is based on my own experiments, it is obviously not
authoritative, and it is not guaranteed to be accurate or complete. This document tells how
things are, not how they are supposed to be. Some details appear to be the haphazard
consequences of how compilers happen to be implemented rather than results of careful
planning. Calling "conventions" may not be the most appropriate term in this case, but it
may be necessary to copy the quirks of existing compilers when full compatibility is desired.

I have no knowledge about whether any information provided here is protected by patents
or other legal restrictions, but I have found no specific patent markings on the compilers.

I have gathered this information mainly by converting C++ code to assembly. All the
compilers I have tested are capable of converting C++ to assembly, either directly or via
object files. The reader is encouraged to do your own research, if necessary, to get
additional information needed or to clarify any questions you may have. The easiest way of
doing this research is to make the compiler convert a C++ test file to assembly. Other
possible methods are to use object file dump utilities, disassembly utilities, or provoke error
messages from a linker. If you find any errors in this document then please let me know.

 5

Please note that I don't have the time and resources to help people with their programming
problems. If you Email me with such questions, you will not get any answer. You may send
your questions to appropriate internet forums instead.

2 The need for standardization
In the days of the old DOS operating system, it was often possible to combine development
tools from different vendors with few compatibility problems. With 32-bit Windows, the
situation has gone completely out of hand. Different compilers use different data
representations, different function calling conventions, and different object file formats.
While static link libraries have traditionally been considered compiler-specific, the
widespread use of dynamic link libraries (DLL's) has made the distribution of function
libraries in binary form more common. Unfortunately, the standardization of data
representation and calling conventions that would make DLL's compatible is still lacking.

In the Linux, BSD and Mac operating systems, there are fewer compatibility problems
because a more or less official standard is defined. Most of this standard is followed by Gnu
C++ version 3.x and later. Earlier versions of the Gnu compiler are not compatible with this.

Fortunately, there is a growing recognition of the need for standardization of application
binary interfaces (ABI's). The ABI's for the new 64-bit operating systems are specified in
much more detail than we have seen in older operating systems. However, some of these
ABI's still lack specification of name mangling schemes and other details. Traditionally,
compiler vendors have not published or standardized their name mangling schemes. A
common excuse was that the object files would not be compatible anyway because of
differences in data formats and calling conventions. Now that data formats and calling
conventions are specified in the ABI's, there is no excuse any more for not publishing and
standardizing name mangling schemes as well. It is my hope that this document will be a
contribution towards this end.

Compilers and other development tools is an area where de facto standards play an
important role. Almost all compilers for UNIX-like x86 platforms are designed to be
compatible with the Gnu compiler. And the calling "conventions" of the Microsoft compiler
has almost become a de facto standard for the Windows operating system. The C++
compilers from Intel, Symantec, Digital Mars and Codeplay are all designed to be binary
compatible with Microsoft's C++ compiler, despite the fact that Microsoft has refused to
publish important details. At least some of these compiler makers have relied on reverse
engineering for obtaining the necessary information. There is a pressing need for publishing
the relevant standards, and the present document is my contribution towards this end.

It is highly recommended that designers of development tools follow all available standards.
Where no official standard exists, use an existing compiler for reference. Use the Microsoft
compiler as a reference for Windows systems and the Gnu compiler as a reference for
UNIX-like systems. For features that are not supported by these compilers, use the Intel
compiler for reference. The calling conventions of these compilers may be considered de

facto standards for Windows and UNIX platforms.

Click here to download full PDF material

https://www.computer-pdf.com/programming/c-cpp/437-tutorial-calling-conventions-for-c-compilers-and-os.html

