
A Quick Introduction to C++Tom Anderson\If programming in Pascal is like being put in a straightjacket, then program-ming in C is like playing with knives, and programming in C++ is like jugglingchainsaws." Anonymous.1 IntroductionThis note introduces some simple C++ concepts and outlines a subset of C++ that is easierto learn and use than the full language. Although we originally wrote this note for explainingthe C++ used in the Nachos project, I believe it is useful to anyone learning C++. I assumethat you are already somewhat familiar with C concepts like procedures, for loops, andpointers; these are pretty easy to pick up from reading Kernighan and Ritchie's \The CProgramming Language."I should admit up front that I am quite opinionated about C++, if that isn't obviousalready. I know several C++ purists (an oxymoron perhaps?) who violently disagree withsome of the prescriptions contained here; most of the objections are of the form, \How couldyou have possibly left out feature X?" However, I've found from teaching C++ to nearly1000 undergrads over the past several years that the subset of C++ described here is prettyeasy to learn, taking only a day or so for most students to get started.The basic premise of this note is that while object-oriented programming is a useful wayto simplify programs, C++ is a wildly over-complicated language, with a host of featuresthat only very, very rarely �nd a legitimate use. It's not too far o� the mark to say thatC++ includes every programming language feature ever imagined, and more. The naturaltendency when faced with a new language feature is to try to use it, but in C++ thisapproach leads to disaster.Thus, we need to carefully distinguish between (i) those concepts that are fundamental(e.g., classes, member functions, constructors) { ones that everyone should know and use,(ii) those that are sometimes but rarely useful (e.g., single inheritance, templates) { onesthat beginner programmers should be able to recognize (in case they run across them) butavoid using in their own programs, at least for a while, and (iii) those that are just a bad ideaand should be avoided like the plague (e.g., multiple inheritance, exceptions, overloading,references, etc).Of course, all the items in this last category have their proponents, and I will admit that,like the hated goto, it is possible to construct cases when the program would be simplerThis article is based on an earlier version written by Wayne Christopher.1



using a goto or multiple inheritance. However, it is my belief that most programmers willnever encounter such cases, and even if you do, you will be much more likely to misuse thefeature than properly apply it. For example, I seriously doubt an undergraduate would needany of the features listed under (iii) for any course project (at least at Berkeley this is true).And if you �nd yourself wanting to use a feature like multiple inheritance, then, my advice isto fully implement your program both with and without the feature, and choose whicheveris simpler. Sure, this takes more e�ort, but pretty soon you'll know from experience when afeature is useful and when it isn't, and you'll be able to skip the dual implementation.A really good way to learn a language is to read clear programs in that language. I havetried to make the Nachos code as readable as possible; it is written in the subset of C++described in this note. It is a good idea to look over the �rst assignment as you read thisintroduction. Of course, your TA's will answer any questions you may have.You should not need a book on C++ to do the Nachos assignments, but if you are curious,there is a large selection of C++ books at Cody's and other technical bookstores. (My wifequips that C++ was invented to make researchers at Bell Labs rich from writing \How toProgram in C++" books.) Most new software development these days is being done inC++, so it is a pretty good bet you'll run across it in the future. I use Stroustrup's "TheC++ Programming Language" as a reference manual, although other books may be morereadable. I would also recommend Scott Meyer's \E�ective C++" for people just beginningto learn the language, and Coplien's \Advanced C++" once you've been programming inC++ for a couple years and are familiar with the language basics. Also, C++ is continuallyevolving, so be careful to buy books that describe the latest version (currently 3.0, I think!).2 C in C++To a large extent, C++ is a superset of C, and most carefully written ANSI C will compileas C++. There are a few major caveats though:1. All functions must be declared before they are used, rather than defaulting to typeint.2. All function declarations and de�nition headers must use new-style declarations, e.g.,extern int foo(int a, char* b);The form extern int foo(); means that foo takes no arguments, rather than argu-ments of an unspeci�ed type and number. In fact, some advise using a C++ compilereven on normal C code, because it will catch errors like misused functions that a normalC compiler will let slide.3. If you need to link C object �les together with C++, when you declare the C functionsfor the C++ �les, they must be done like this:2



extern "C" int foo(int a, char* b);Otherwise the C++ compiler will alter the name in a strange manner.4. There are a number of new keywords, which you may not use as identi�ers | somecommon ones are new, delete, const, and class.3 Basic ConceptsBefore giving examples of C++ features, I will �rst go over some of the basic concepts ofobject-oriented languages. If this discussion at �rst seems a bit obscure, it will becomeclearer when we get to some examples.1. Classes and objects. A class is similar to a C structure, except that the de�nitionof the data structure, and all of the functions that operate on the data structure aregrouped together in one place. An object is an instance of a class (an instance of thedata structure); objects share the same functions with other objects of the same class,but each object (each instance) has its own copy of the data structure. A class thusde�nes two aspects of the objects: the data they contain, and the behavior they have.2. Member functions. These are functions which are considered part of the object andare declared in the class de�nition. They are often referred to as methods of the class.In addition to member functions, a class's behavior is also de�ned by:(a) What to do when you create a new object (the constructor for that object) { inother words, initialize the object's data.(b) What to do when you delete an object (the destructor for that object).3. Private vs. public members. A public member of a class is one that can be reador written by anybody, in the case of a data member, or called by anybody, in thecase of a member function. A private member can only be read, written, or called bya member function of that class.Classes are used for two main reasons: (1) it makes it much easier to organize yourprograms if you can group together data with the functions that manipulate that data, and(2) the use of private members makes it possible to do information hiding, so that you canbe more con�dent about the way information ows in your programs.3.1 ClassesC++ classes are similar to C structures in many ways. In fact, a C++ struct is really aclass that has only public data members. In the following explanation of how classes work,we will use a stack class as an example. 3



1. Member functions. Here is a (partial) example of a class with a member functionand some data members:class Stack {public:void Push(int value); // Push an integer, checking for overflow.int top; // Index of the top of the stack.int stack[10]; // The elements of the stack.};voidStack::Push(int value) {ASSERT(top < 10); // stack should never overflowstack[top++] = value;}This class has two data members, top and stack, and one member function, Push.The notation class::function denotes the function member of the class class. (In thestyle we use, most function names are capitalized.) The function is de�ned beneath it.As an aside, note that we use a call to ASSERT to check that the stack hasn't overowed;ASSERT drops into the debugger if the condition is false. It is an extremely goodidea for you to use ASSERT statements liberally throughout your code to documentassumptions made by your implementation. Better to catch errors automatically viaASSERTs than to let them go by and have your program overwrite random locations.In actual usage, the de�nition of class Stack would typically go in the �le stack.hand the de�nitions of the member functions, like Stack::Push, would go in the �lestack.cc.If we have a pointer to a Stack object called s, we can access the top element ass->top, just as in C. However, in C++ we can also call the member function using thefollowing syntax:s->Push(17);Of course, as in C, s must point to a valid Stack object.Inside a member function, one may refer to the members of the class by their namesalone. In other words, the class de�nition creates a scope that includes the member(function and data) de�nitions.Note that if you are inside a member function, you can get a pointer to the object youwere called on by using the variable this. If you want to call another member functionon the same object, you do not need to use the this pointer, however. Let's extendthe Stack example to illustrate this by adding a Full() function.4



class Stack {public:void Push(int value); // Push an integer, checking for overflow.bool Full(); // Returns TRUE if the stack is full, FALSE otherwise.int top; // Index of the lowest unused position.int stack[10]; // A pointer to an array that holds the contents.};

5



Click here to download full PDF material

https://www.computer-pdf.com/programming/c-cpp/449-tutorial-a-quick-introduction-to-c.html

