
Page 1 of 28

Document Number: P0235R0

Date: 2016-02-05

Audience: EWG, SG14

Reply To: Guy Somberg

gsomberg@blizzard.com

Brian Fitzgerald

bfitz@blizzard.com

A PackagiŶg “ysteŵ for C++
Guy Somberg

Brian Fitzgerald

Abstract

We present a design and specification of a packaging system for C++. This system

differs from modules in that it is all about source code distribution, rather than the

mechanics of compiling. A useful packaging system is important to unify software

packages, and to make it trivial (or, at least, as easy as possible) both to use new

C++ libraries and to package libraries for distribution.

Contents

1 Introduction ... 1

2 The Problem ... 2

3 Packages Design ... 3

4 A Standing Document 9

5 Syntax Discussion 13

6 Goals and Principles 17

7 Interim Paths and the Glorious Future 19

8 Questions (And Some Answers) 20

9 Further Bikeshedding 25

A Standardese ... 26

B Interoperating with WG14 27

C Acknowledgements 27

D References ... 27

1 Introduction
The success of many programming languages such as Perl, Java, and Ruby can be attributed, in large part,

to their packaging systems. C++ is successful despite the lack of any centralized packaging system or

mailto:gsomberg@blizzard.com
mailto:bfitz@blizzard.com

Page 2 of 28

standardized source code package format1. However, that success does not mean that we should ignore

the benefits of a packaging system.

We have performed a survey of existing packaging systems in other languages, published on GitHub2,

which we have drawn upon extensively as reference. The system we describe in this paper defines

standards for layout and file format of packages. It is as simple as it is possible for it to be, while still

providing features both for library authors and for library users.

Ultimately, the goal of this packaging system is different whether you are a library author or a library user:

 As a library user, the time it takes me from going on a website and seeing a C++ library to using it

in my own project should be on the order of seconds, and should not require me to do anything

other than add a single line to my source code.

 As a library author, I have the ability to create source code packages for consumption by this

packaging system with minimal (or, ideally, no) changes to my project. Furthermore, I can define

a set of parameters to the build

As a side-benefit, there is a related feature (which can be split out into its own proposal if so desired) that

will allow a single translation unit to reference a set of others to compile in sequence, thus allowing you

to define an entire program in a single file.

There has, for a long time, been a desire for this sort of system to exist in C++. At his BoostCon 2008

keynote presentation entitled "A C++ library wish list", Bjarne Stroustrup described a world of easily-

installed and packaged libraries. And, in fact, in slide #33 of that presentation, he shows a system that is

similar in spirit to what we are proposing here in this document.

2 The Problem
When I, as a C++ programmer, want to use a C++ library that is not built into my compiler or distribution,

it is a big distraction. I will have to:

 Acquire the library. Hopefully they have source code, and, if not, hopefully they have a compiled

binary that is compatible with my chosen compiler and command-line settings.

 Build the liďƌaƌǇ. If I͛ŵ luĐkǇ, theǇ͛ǀe iŶĐluded a ŵakefile oƌ pƌojeĐt file. “oŵetiŵes theǇ doŶ͛t.
“oŵetiŵes it͛s ǁoƌse, aŶd I haǀe to iŶstall Peƌl oƌ soŵe other third-party tool in order to generate

header or source files.

 Integrate the library into my build system. Sometimes this is as easy as copying files into my

project, but I may end up having to figure out the proper subset of files to include. Oh, aŶd doŶ͛t
foƌget ďuild flags…

FiŶallǇ, if I͛ǀe doŶe all of that ƌight, theŶ I͛ll haǀe a liďƌaƌǇ that I ĐaŶ staƌt to use. Wait, ǁhat ǁas I ǁoƌkiŶg
oŶ? I͛ǀe Ŷoǁ foƌgotteŶ ǁhǇ I Ŷeeded this liďƌaƌǇ iŶ the fiƌst plaĐe.

1 C++ is not unique in this regard. Python is another example of a language that became successful before a

standardized package system. However, as successful as Python was without standardized packages, it became even

more popular once a packaging system was in place.
2 See Section D (References) "A Survey of Programming Language Package Systems" for the URL.

Page 3 of 28

What we need, therefore, is a way that I ĐaŶ tƌiǀiallǇ tell the Đoŵpileƌ ͞heǇ, use that liďƌaƌǇ͟ aŶd haǀe
confidence that the library will be acquired, built, and integrated without any extra work on my part. On

the other side of the coin, we need a way for library authors to easily create source packages that can be

used by C++ developers using the standard tooling.

3 Packages Design
We want it to be as trivial as possible to use packages from the get-go. Anything more than a single line

of Đode is too ŵuĐh. Let͛s take a look at hoǁ ǁe ŵight use a library like zlib:

#using package "zlib"

void decompress(array_view<byte> buffer) {

 // ...

 inflate(state, Z_NO_FLUSH);

 // ...

}

WheŶ the ͞zliď͟ paĐkage is iŵpoƌted, it is opeŶed up ;ǁe͛ll see hoǁ iŶ a ŵiŶuteͿ, its ĐoŶteŶts aƌe added
to a set of files to compile, and a defaulted set of headers and module imports is included into the current

translation unit. The compiler then resets itself, then Đoŵpiles eaĐh of the paĐkage͛s files as its oǁŶ
translation unit.

It is, of course, expected (but not required) that the compiler will cache the results of these compiles, so

if another translation unit requests the same files with the same compile settings, it will already have

them available.

This document has settled on the preprocessor directive '#using' as its mechanism for using packages. We

know that the C++ language is averse to adding new features to the preprocessor, so consider the directive

as a straw-man for the purposes of exposition. For a discussion of the different syntax options, see Section

5.

3.1 Syntax Overview

There is one new preprocessor directive that we are adding for this proposal: #using. That directive, then,

has three different keywords that trigger different behavior: package, option, and path. See section 6 for

a discussion of why we chose a preprocessor keyword, and other alternatives.

// Default package import

#using package "my_package"

// package import with version selection

#using package "my_package" version "1.2.3"

// package import, overriding the default list of headers with an empty list

// the 'version' syntax works in addition to this, but is omitted for brevity

#using package "my_package" ()

// package import with specific headers included

#using package "my_package" ("foo.h", "bar.h")

// package import with specific modules imported

Page 4 of 28

// This list can be empty, and you can have both modules and headers defined

#using package "my_package" [foo, bar.baz]

// set package option MY_KEY to "my_value"

#using option MY_KEY = "my_value"

// add foo.cpp to the set of files to compile

#using path "foo.cpp"

// add all files in the path foo/ to the set of files to compile

#using path "foo"

// add all files in the path foo/ and all of its subdirectories

// to the set of files to compile

#using path "foo" recursive

Details of the semantics for '#using package' are in Section 3.5.1, '#using option' in Section 3.5.2, and

'#using path' in section 3.5.3.

Let's first examine the details of what is a package.

3.2 Packages

A package is a specific layout of files and directories, which is typically packaged as a zip file, but can also

be a directory in the filesystem. If it is a zip file, then it must conform to ISO/IEC 21320-1:2015 (the ISO

standard describing the zip file format, with some restrictions on compression and settings).

The layout of a package file must look like this:

Entry Meaning

/ Root of the path

/MANIFEST Manifest file. Optional.

/include Include files go here

/source Source files go here

/obj Object files – reserved pathname for the system, but usage details are implementation

defined. Will typically be used to store .o or .obj precompiled versions of the contents

of the /source directory.

/lib Library archive files – reserved pathname for the system, but usage details are

implementation defined. Will typically be used to store .a or .lib precompiled versions

of the contents of the /source directory.

/bin Binary tool files – reserved pathname for the system, but usage details are

implementation defined. Will typically be used to store tools that need to be run. For

example, for a Google Protobuf package, the /bin directory could contain copies of

the protoc protobuf compiler.

See section 3.6 for a description of the MANIFEST file format.

3.3 What the Compiler Does with Packages

OŶĐe it͛s ďeeŶ told to load a paĐkage, the Đoŵpileƌ Ŷeeds to kŶoǁ ǁhat to do ǁith it. Here is what the

compiler does in order to use a package:

Page 5 of 28

1) Find the package

a) If no version is selected, then use an implementation-defined algorithm to discover the package's

location at any version.

b) If a version is selected, then use an implementation-defined algorithm to discover that specific

version.

c) If the package cannot be found, then it is an error.

2) If the package has already been loaded

a) Jump to step 5

3) Look for the MANIFEST file in the root of the package's directory structure and parse it.

4) Starting with the root directory, perform the following procedure for each directory that matches:

a) If there is a directory called ͞ iŶĐlude͟, theŶ add it to the Package Include Path List non-recursively.

b) If theƌe is a diƌeĐtoƌǇ Đalled ͞souƌĐe͟, theŶ add all of its ĐoŶteŶts ƌeĐuƌsiǀelǇ to the File Set.

i) If there are modules in the package, then appropriate module metadata is generated at this

time.

c) For every other directory in the list:

i) If it ŵatĐhes oŶe of the otheƌ ƌeseƌǀed Ŷaŵes ;͞oďj͟, ͞liď͟, oƌ ͞ďiŶ͟Ϳ theŶ peƌfoƌŵ aŶ
implementation-defined task on it. The default is to ignore it.

ii) Apply special package option rules, as defined in section 3.5.2.1.

iii) If it is not reserved and the special package option rules don't apply, then ignore the directory.

5) Include the default headers from the Package Include Path List, and import the default modules.

In short, when using a package, it adds the source files to the File Set, includes headers from inside of the

package, and imports modules from inside of the package. Of Đouƌse, the ͞as if͟ ƌule applies heƌe, ǁhiĐh
will allow compiler vendors to cache the results of package compiles, or to use compatible object or library

files from the reserved directories.

Step 5 deserves a bit more explanation. Let's say that we have a package called "foo", which contains a

MANIFEST file that declares that the default includes are 'foo.h' and 'public/bar.h', and that the default

imports are 'foo.containers' and 'bar.algorithms'. See section 3.6 for a description of the MANIFEST file

format and how these defaults are defined.

You would use this package thus:

#using package "foo"

When the compiler sees this, it will go through the whole procedure described above, and then behave

as if the '#using package' were replaced with:

#include "foo.h"

#include "public/bar.h"

import foo.containers;

import bar.algorithms;

3.4 The File Set

We have mentioned this ŵǇsteƌious ͞set of files to Đoŵpile͟ or "File Set" a feǁ tiŵes. Let͛s foƌŵalize
what we actually mean by it.

Click here to download full PDF material

https://www.computer-pdf.com/programming/c-cpp/450-tutorial-a-packaging-system-for-c.html

