

 Web framework for Python

Django Book: pdf version

compiled by Suvash Sedhain

 bir2su.blogspot.com

Visit www.djangobook.com for online version of the book

The Django Book

The Dj ango Book

Table of cont ent s

Bet a, Engl ish

October 30, 2006 Chapter 1: I nt roduct ion to Django

October 30, 2006 Chapter 2: Get t ing started

Novem ber 6, 2006 Chapter 3: The basics of generat ing Web pages

Novem ber 7, 2006 Chapter 4: The Django tem plate system

Novem ber 13, 2006 Chapter 5: I nteract ing with a database: m odels

Novem ber 13, 2006 Chapter 6: The Django adm in site

TBA Chapter 7: Form processing

Decem ber 11, 2006 Chapter 8: Advanced views and URLconfs

Novem ber 20, 2006 Chapter 9: Generic views

Decem ber 4, 2006 Chapter 10: Extending the tem plate engine

Decem ber 11, 2006 Chapter 11: Output t ing non-HTML content

Decem ber 24, 2006 Chapter 12: Sessions, users, and regist rat ion

TBA Chapter 13: Com m ents

Novem ber 20, 2006 Chapter 14: Caching

Decem ber 18, 2006 Chapter 15: Other cont r ibuted sub- fram eworks

Decem ber 25, 2006 Chapter 16: Middleware

Decem ber 25, 2006 Chapter 17: I ntegrat ing with legacy databases and applicat ions

January 3, 2007 Chapter 18: Custom izing the Django adm in

file:///D|/books/computer/programming/python/books/DJANGO BOOK/TOC.HTML (1 of 2)9/28/2007 2:33:44 PM

The Django Book

January 8, 2007 Chapter 19: I nternat ionalizat ion and localizat ion

January 8, 2007 Chapter 20: Security

January 24, 2007 Chapter 21: Deploying Django

TBA Appendix A: Case studies

TBA Appendix B: Model definit ion reference

TBA Appendix C: Database API reference

TBA Appendix D: URL dispatch reference

TBA Appendix E: Set t ings reference

TBA Appendix F: Built - in tem plate tag/ filter reference

TBA Appendix G: The django-adm in ut ilit y

TBA Appendix H: Request and response object reference

TBA Appendix I : Regular expression reference

Copyright 2006 Adrian Holovaty and Jacob Kaplan-Moss.
This work is licensed under the GNU Free Docum ent License.

file:///D|/books/computer/programming/python/books/DJANGO BOOK/TOC.HTML (2 of 2)9/28/2007 2:33:44 PM

The Dj ango Book
table of contents ◊ next »

Chapt er 1: Int roduct ion t o Dj ango
I f you go to the Web site djangoproject .com using your Web browser — or, depending on the decade in which you’re reading this
dest ined- to-be- t im eless literary work, using your cell phone, elect ronic notebook, shoe, or any I nternet -superceding cont rapt ion
— you’ll find this explanat ion:

“ Dj ango is a high-level Pyt hon Web f ramework t hat encourages rapid development and clean, pragmat ic design. ”

That ’s a m outhful — or eyeful or pixelful, depending on whether this book is being recited, read on paper or projected to you on a
Jum bot ron, respect ively.

Let ’s break it down.

Dj ango is a high-level Pyt hon Web f ramework…

A high- level Web fram ework is software that eases the pain of building dynam ic Web sites. I t abst racts com m on problem s of Web
developm ent and provides shortcuts for frequent program m ing tasks.

For clar ity, a dynam ic Web site is one in which pages aren’t sim ply HTML docum ents sit t ing on a server’s filesystem som ewhere.
I n a dynam ic Web site, rather, each page is generated by a com puter program — a so-called “Web applicat ion” — that you, the
Web developer, create. A Web applicat ion m ay, for instance, ret r ieve records from a database or take som e act ion based on user
input .

A good Web fram ework addresses these com m on concerns:

● I t provides a m ethod of m apping requested URLs to code that handles requests. I n other words, it gives you a way
of designat ing which code should execute for which URL. For instance, you could tell the fram ework, “For URLs that look
like /users/joe/, execute code that displays the profile for the user with that usernam e.”

● I t m akes it easy to display, validate and redisplay HTML form s. HTML form s are the pr im ary way of get t ing input data
from Web users, so a Web fram ework had bet ter m ake it easy to display them and handle the tedious code of form display
and redisplay (with errors highlighted) .

● I t converts user- subm it ted input into data st ructures that can be m anipulated convenient ly. For exam ple, the
fram ework could convert HTML form subm issions into nat ive data types of the program m ing language you’re using.

● I t helps separate content from presentat ion via a tem plate system , so you can change your site’s look-and- feel
without affect ing your content , and vice-versa.

● I t convenient ly integrates w ith storage layers — such as databases — but doesn’t st r ict ly require the use of a
database.

● I t lets you w ork m ore product ively, at a higher level of abstract ion , than if you were coding against , say, HTTP. But it
doesn’t rest r ict you from going “down” one level of abst ract ion when needed.

● I t gets out of your w ay , neglect ing to leave dir ty stains on your applicat ion such as URLs that contain “ .aspx” or “ .php” .

Django does all of these things well — and int roduces a num ber of features that raise the bar for what a Web fram ework should
do.

The fram ework is writ ten in Python, a beaut iful, concise, powerful, high- level program m ing language. To develop a site using
Django, you write Python code that uses the Django librar ies. Although this book doesn’t include a full Python tutor ial, it
highlights Python features and funct ionality where appropriate, part icular ly when code doesn’t im m ediately m ake sense.

…t hat encourages rapid development …

Regardless of how m any powerful features it has, a Web fram ework is worthless if it doesn’t save you t im e. Django’s philosophy
is to do all it can to facilitate hyper- fast developm ent . With Django, you build Web sites in a m at ter of hours, not days; weeks,
not years.

This is possible largely thanks to Python itself. Oh, Python, how we love thee, let us count the bullet points:

● Python is an interpreted language , which m eans there’s no need to com pile code. Just write your program and execute it .
I n Web developm ent , this m eans you can develop code and im m ediately see results by hit t ing “ reload” in your Web browser.

● Python is dynam ically typed , which m eans you don’t have to worry about declar ing data types for your variables.

● Python syntax is concise yet expressive , which m eans it takes less code to accom plish the sam e task than in other, m ore
verbose, languages such as Java. One line of python usually equals 10 lines of Java. (This has a convenient side benefit :
Fewer lines of code m eans fewer bugs.)

● Python offers pow erful int rospect ion and m eta- program m ing features, which m ake it possible to inspect and add

Chapter 1: Introduction to Django

file:///C|/Documents and Settings/Suren/Desktop/Chapter 1 Introduction to Django.htm (1 of 4)9/28/2007 4:13:54 PM

Chapter 1: Introduction to Django

behavior to objects at runt im e.

Beyond the product ivity advantages inherent in Python, Django itself m akes every effort to encourage rapid developm ent . Every
part of the fram ework was designed with product ivity in m ind. We’ll see exam ples throughout this book.

…and clean, pragmat ic design

Finally, Django st r ict ly m aintains a clean design throughout its own code and m akes it easy to follow best Web-developm ent
pract ices in the applicat ions you create.

That m eans, if you think of Django as a car, it would be an elegant sports car, capable not only of high speeds and sharp turns,
but deliver ing excellent m ileage and clean em issions.

The philosophy here is: Django m akes it easy to do things the “ r ight ” way.

Specifically, Django encourages loose coupling: the program m ing philosophy that different pieces of the applicat ion should be
interchangeable and should com m unicate with each other via clear, concise API s.

For exam ple, the tem plate system knows nothing about the database-access system , which knows nothing about the HTTP
request / response layer, which knows nothing about caching. Each one of these layers is dist inct and loosely coupled to the rest .
I n pract ice, this m eans you can m ix and m atch the layers if need be.

Django follows the “m odel-view-cont roller” (MVC) architecture. Sim ply put , this is a way of developing software so that the code
for defining and accessing data (the m odel) is separate from the business logic (the cont roller) , which in turn is separate from the
user interface (the view) .

MVC is best explained by an exam ple of what not to do. For instance, look at the following PHP code, which ret r ieves a list of
people from a MySQL database and outputs the list in a sim ple HTML page. (Yes, we realize it ’s possible for disciplined
program m ers to write clean PHP code; we’re sim ply using PHP to illust rate a point .) :

<html>
<head><title>Friends of mine</title></head>
<body>

<h1>Friends of mine</h1>

<?php
$connection = @mysql_connect("localhost", "my_username", "my_pass");
mysql_select_db("my_database");
$people = mysql_query("SELECT name, age FROM friends");
while ($person = mysql_fetch_array($people, MYSQL_ASSOC)) {
?>

<?php echo $person['name'] ?> is <?php echo $person['age'] ?> years old.

<?php } ?>

</body>
</html>

While this code is conceptually sim ple for beginners — because everything is in a single file — it ’s bad pract ice for several reasons:

1. The presentat ion is t ied to the code. I f a designer wanted to edit the HTML of this page, he or she would have to edit this
code, because the HTML and PHP core are intertwined.

By cont rast , the Django/ MVC approach encourages separat ion of code and presentat ion, so that presentat ion is governed by
tem plates and business logic lives in Python m odules. Program m ers deal with code, and designers deal with HTML.

2. The database code is t ied to the business logic. This is a problem of redundancy: I f you renam e your database tables or
colum ns, you’ll have to rewrite your SQL.

By cont rast , the Django/ MVC approach encourages a single, abst racted data-access layer that ’s responsible for all data
access. I n Django’s case, the data-access layer knows your database table and colum n nam es and lets you execute SQL
queries via Python instead of writ ing SQL m anually. This m eans, if database table nam es change, you can change it in a
single place — your data-m odel definit ion — instead of in each SQL statem ent lit tered throughout your code.

3. The URL is coupled to the code. I f this PHP file lives at /foo/index.php, it ’ll be executed for all requests to that address.
But what if you want this sam e code to execute for requests to /bar/ and /baz/? You’d have to set up som e sort of includes
or rewrite rules, and those get unm anageable quickly.

file:///C|/Documents and Settings/Suren/Desktop/Chapter 1 Introduction to Django.htm (2 of 4)9/28/2007 4:13:54 PM

Click here to download full PDF material

https://www.computer-pdf.com/web-programming/506-tutorial-django-web-framework-for-python.html

