
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1.10

1.11

1.12

Table	of	Contents
Introduction

Preface

Use	the	Tools	Available

Style

Considering	Safety

Considering	Maintainability

Considering	Portability

Considering	Threadability

Considering	Performance

Enable	Scripting

Further	Reading

Final	Thoughts

1



cppbestpractices

Collaborative	Collection	of	C++	Best	Practices

This	document	is	available	as	a	download	via	gitbook

For	more	information	please	see	the	Preface.

This	book	has	inspired	an	O'Reilly	video:	Learning	C++	Best	Practices

Introduction

2



Preface
C++	Best	Practices:	A	Forkable	Coding	Standards	Document

This	document	is	meant	to	be	a	collaborative	discussion	of	the	best	practices	in	C++.	It
complements	books	such	as	Effective	C++	(Meyers)	and	C++	Coding	Standards
(Alexandrescu,	Sutter).	We	fill	in	some	of	the	lower	level	details	that	they	don't	discuss	and
provide	specific	stylistic	recommendations	while	also	discussing	how	to	ensure	overall	code
quality.

In	all	cases	brevity	and	succinctness	is	preferred.	Examples	are	preferred	for	making	the
case	for	why	one	option	is	preferred	over	another.	If	necessary,	words	will	be	used.

C++	Best	Practices	by	Jason	Turner	is	licensed	under	a	Creative	Commons	Attribution-
NonCommercial	4.0	International	License.

Disclaimer

This	document	is	based	on	my	personal	experiences.	You	are	not	supposed	to	agree	with	it
100%.	It	exists	as	a	book	on	GitHub	so	that	you	can	fork	it	for	your	own	uses	or	submit	back
proposed	changes	for	everyone	to	share.

This	book	has	inspired	an	O'Reilly	video:	Learning	C++	Best	Practices

Preface

3



Use	The	Tools	Available
An	automated	framework	for	executing	these	tools	should	be	established	very	early	in	the
development	process.	It	should	not	take	more	than	2-3	commands	to	checkout	the	source
code,	build,	and	execute	the	tests.	Once	the	tests	are	done	executing,	you	should	have	an
almost	complete	picture	of	the	state	and	quality	of	the	code.

Source	Control
Source	control	is	an	absolute	necessity	for	any	software	development	project.	If	you	are	not
using	one	yet,	start	using	one.

GitHub	-	allows	for	unlimited	public	repositories,	must	pay	for	a	private	repository.
Bitbucket	-	allows	for	unlimited	private	repositories	with	up	to	5	collaborators,	for	free.
SourceForge	-	open	source	hosting	only.
GitLab	-	allows	for	unlimited	public	and	private	repositories,	unlimited	CI	Runners
included,	for	free.
Visual	Studio	Online	(http://www.visualstudio.com/what-is-visual-studio-online-vs)	-
allows	for	unlimited	public	repositories,	must	pay	for	private	repository.	Repositories	can
be	git	or	TFVC.	Additionally:	Issue	tracking,	project	planning	(multiple	Agile	templates,
such	as	SCRUM),	integrated	hosted	builds,	integration	of	all	this	into	Microsoft	Visual
Studio.	Windows	only.

Build	Tool
Use	an	industry	standard	widely	accepted	build	tool.	This	prevents	you	from	reinventing	the
wheel	whenever	you	discover	/	link	to	a	new	library	/	package	your	product	/	etc.	Examples
include:

CMake
Consider:	https://github.com/sakra/cotire/	for	build	performance
Consider:	https://github.com/toeb/cmakepp	for	enhanced	usability

Conan	-	a	crossplatform	dependency	manager	for	C++
C++	Archive	Network	(CPPAN)	-	a	crossplatform	dependency	manager	for	C++
Waf
FASTBuild
Ninja	-	can	greatly	improve	the	incremental	build	time	of	your	larger	projects.	Can	be
used	as	a	target	for	CMake.

Use	the	Tools	Available

4



Bazel	-	Note:	MacOS	and	Linux	only.
gyp	-	Google's	build	tool	for	chromium.
maiken	-	Crossplatform	build	tool	with	Maven-esque	configuration	style.
Qt	Build	Suite	-	Crossplatform	build	tool	From	Qt.
meson	-	Open	source	build	system	meant	to	be	both	extremely	fast,	and,	even	more
importantly,	as	user	friendly	as	possible.

Remember,	it's	not	just	a	build	tool,	it's	also	a	programming	language.	Try	to	maintain	good
clean	build	scripts	and	follow	the	recommended	practices	for	the	tool	you	are	using.

Continuous	Integration
Once	you	have	picked	your	build	tool,	set	up	a	continuous	integration	environment.

Continuous	Integration	(CI)	tools	automatically	build	the	source	code	as	changes	are	pushed
to	the	repository.	These	can	be	hosted	privately	or	with	a	CI	host.

Travis	CI
works	well	with	C++
designed	for	use	with	GitHub
free	for	public	repositories	on	GitHub

AppVeyor
supports	Windows,	MSVC	and	MinGW
free	for	public	repositories	on	GitHub

Hudson	CI	/	Jenkins	CI
Java	Application	Server	is	required
supports	Windows,	OS	X,	and	Linux
extendable	with	a	lot	of	plugins

TeamCity
has	a	free	option	for	open	source	projects

Decent	CI
simple	ad-hoc	continuous	integration	that	posts	results	to	GitHub
supports	Windows,	OS	X,	and	Linux
used	by	ChaiScript

Visual	Studio	Online	(http://www.visualstudio.com/what-is-visual-studio-online-vs)
Tightly	integrated	with	the	source	repositories	from	Visual	Studio	Online
Uses	MSBuild	(Visual	Studio's	build	engine),	which	is	available	on	Windows,	OS	X
and	Linux
Provides	hosted	build	agents	and	also	allows	for	user-provided	build	agents
Can	be	controlled	and	monitored	from	within	Microsoft	Visual	Studio
On-Premise	installation	via	Microsoft	Team	Foundation	Server

Use	the	Tools	Available

5



Click here to download full PDF material

https://www.computer-pdf.com/programming/c-cpp/523-tutorial-c-best-practices.html

