


1.1

1.2

1.2.1

1.2.2

1.2.3

1.2.4

1.2.5

1.2.6

1.3

1.3.1

1.3.2

1.3.3

1.3.4

1.3.5

1.3.6

1.3.7

1.3.8

1.3.9

1.3.10

1.3.11

1.3.12

1.3.13

1.3.14

1.3.15

1.3.16

1.3.17

1.3.18

1.3.19

1.4

1.4.1

Table	of	Contents
Introduction

Process

Build	Fast	Feedback	Loops

Instant	Feedback

Fast	Feedback

Slower	Feedback

Agree	The	Language	You	Use	For	Tests

Use	Coverage	As	A	Tool	Not	A	Target

Style

Consider	Code	Generators	Carefully

Optimise	For	Readability

Prefer	Readable	Code	To	Comments

Javadoc	Judiciously

Remember	Kiss	And	Yagni

Prefer	Composition

Keep	It	Solid

Keep	Your	Code	Dry

Prefer	Reversible	Decisions

Make	Dependencies	Explicit

Prefer	Immutable	Objects

Use	A	Consistent	Code	Layout

Group	Methods	For	Easy	Comprehension

Keep	Methods	Small	And	Simple

Methods	Should	Do	One	Thing

Avoid	Null

Use	Final	Liberally

Provide	No	More	Than	One	Worker	Constructor

Avoid	Checked	Exceptions

Specifics

Know	How	To	Implement	Hashcode	And	Equals

2



1.4.2

1.4.3

1.4.4

1.4.5

1.4.6

1.4.7

1.4.8

1.4.9

1.4.10

1.4.11

1.5

1.5.1

1.5.2

1.5.3

1.5.4

1.5.5

1.5.6

1.5.7

1.5.8

1.5.9

1.5.10

1.6

1.6.1

1.6.2

1.6.3

Do	Not	Reassign	Parameters

Limit	Scope

Prefer	For	Each	Loops	To	For	Loops

Prefer	Maps	And	Filters	To	Imperative	Loops

Avoid	Apis	From	Prehistory

Beware	Casts	And	Generics	Warnings

Do	Not	Use	Magic	Numbers

Do	Not	Use	The	Assert	Keyword

Avoid	Floats	And	Doubles

Do	Not	Use	Reflection

Tests

Write	Specifications	Not	Tests

Think	Units	Not	Methods

Name	Tests	With	A	Specification	Style

Pick	Examples	Carefully

Make	Tests	Easy	To	Understand

Understand	How	To	Use	Mocks	And	Stubs

Understand	Your	Options	For	Code	Reuse

Write	Repeatable	Tests

Only	Unit	Test	Code	It	Makes	Sense	To	Unit	Test

Testing	FAQS

Bad	advice

Single	Exit	Point	Rules

Always	Use	A	StringBuffer

Hungarian	Notation

3



Introduction

What	is	This?
This	book	is	an	attempt	to	capture	what	"good"	Java	code	looks	like	and	the	practices	that
help	produce	it.

This	is	a	problematic	document	to	write.

There	is	no	one	right	answer	to	what	good	code	looks	like	and	there	are	many	well-
respected	books	that	serve	the	same	purpose	such	as	Effective	Java,	Clean	Code	and
others.

So	why	this	document?

It	differentiates	itself	by	being	:

Freely	distributable
Open	for	update	-	contributions,	corrections	and	updates	are	encouraged
Brief	-	much	is	left	out	in	an	attempt	to	be	easily	digestible
Narrow	-	it	captures	one	opinion	of	"good"	appropriate	for	a	specific	context

This	last	point	is	important.

We	assume	a	number	of	things	about	you	and	the	environment	you	are	working	in.

We	assume	you	are	writing	server	side	Java	in	small	teams.
We	assume	your	teams	are	of	mixed	experience	(some	experts,	some	beginners).
We	assume	you	are	writing	code	in	a	general	"business"	context.
We	assume	you	expect	the	code	to	still	be	in	use	in	five	years'	time.

Some	of	the	suggestions	may	be	valid	in	other	contexts,	others	might	constitute	terrible
advice	for	those	contexts.

It	is	also	just	one	opinion	from	many	valid	alternatives.	To	be	useful	it	needs	to	be	an	opinion
that	you	can	agree	with	and	sign	up	to.	If	you	disagree	with	something	in	this	book	please
make	your	own	thoughts	known	so	it	can	be	improved.

Finally,	not	all	the	code	we	work	on	is	perfect.	Sometimes	we	inherit	our	own	mistakes,
sometimes	we	inherit	other	people's.

The	point	of	this	document	is	not	to	say	that	all	code	must	look	like	this	but	to	have	an
agreed	destination	that	we	are	aiming	for.

Introduction

4



Who	is	This	For?
This	document	is	intended	for	consumption	by	anyone	involved	with	writing	server	side	Java
code.	From	developers	writing	Java	for	the	first	time	through	to	seasoned	technical	leads
serving	multiple	teams.

Some	sections	will	be	more	relevant	to	some	audiences	than	others	but	we	encourage
everyone	to	at	least	skim	all	sections	even	if	you	do	not	read	them	in	depth.

Structure
The	document	is	split	into	five	sections:

Process	-	Discussion	on	development	philosophy	and	workflow
Style	-	Good	style	and	design	at	a	high	level
Specifics	-	More	specific	advice	on	Java	language	features	and	gotchas
Good	tests	-	How	to	write	good	tests
Bad	advice	-	Discussion	of	some	commonly	circulated	bad	advice	and	patterns

Version
This	book	is	updated	often.	The	latest	changes	to	the	book	can	be	viewed	online	at
gitbook.com.

Versioned	releases	are	available	for	free	from	the	book's	website.

If	you	are	reading	a	PDF	or	print	copy	of	this	book	the	release	version	will	be	displayed	on
the	inside	cover.	If	there	is	no	inside	cover	then	you	are	reading	an	unreleased	version	of	the
book.

History
Most	of	the	content	of	this	book	began	life	as	internal	wiki	pages	at	NCR	Edinburgh.	We
started	to	convert	the	wiki	into	this	book	at	the	end	of	2015	so	that	it	could	be	easily	shared
with	other	parts	of	our	company.

Rather	than	keep	this	as	an	internal	document	we	decided	to	open	it	up	to	everyone	in	the
hope	that	together	we	could	make	it	better.

Introduction

5



Click here to download full PDF material

https://www.computer-pdf.com/programming/java/528-tutorial-java-for-small-teams.html

