


0

1

2

3

4

5

6

7

8

9

10

11

12

Table	of	Contents
Introduction

Hello	world!

Intermission	-	why	Rust?

Control	flow

Primitive	types	and	operators

Unique	pointers

Borrowed	pointers

Rc	and	raw	pointers

Data	types

Destructuring	pt	1

Destructuring	pt	2

Arrays	and	vecs

Graphs	and	arena	allocation

Rust	for	C++	Programmers

2



Rust	for	C++	Programmers
This	gitbook	is	a	collection	of	"Rust	for	C++	programmers"	posts	by	Nick	Cameron.

I	found	it	a	bit	hard	to	read	the	posts	on	his	blog,	hence	I	started	copy-pasting	them	into	a	git
repo	to	make	it	easier	to	read.	Of	course,	all	the	credit	for	content	goes	to	Nick	Cameron.

After	a	while,	I	decided	to	turn	them	into	a	gitbook,	so	here	it	is!

Update	(June	2015):	I've	realized	that	Nick	has	created	a	repo	for	his	posts	on	GitHub
(nrc/r4cppp);	I've	merged	new	content	and	will	look	into	possibility	of	merging	this	repo	with
Nick's.

Rust	for	C++	Programmers

3Introduction



Introduction	-	hello	world!
This	is	the	first	in	a	series	of	blog	posts	(none	written	yet)	which	aim	to	help	experienced
C++	programmers	learn	Rust.	Expect	updates	to	be	sporadic	at	best.	In	this	first	blog	post
we'll	just	get	setup	and	do	a	few	super	basic	things.	Much	better	resources	are	at	the	tutorial
and	reference	manual.

First	you	need	to	install	Rust.	You	can	download	a	nightly	build	from	http://www.rust-
lang.org/install.html	(I	recommend	the	nightlies	rather	than	'stable'	versions	-	the	nightlies
are	stable	in	that	they	won't	crash	too	much	(no	more	than	the	stable	versions)	and	you're
going	to	have	to	get	used	to	Rust	evolving	under	you	sooner	or	later	anyway).	Assuming	you
manage	to	install	things	properly,	you	should	then	have	a		rustc		command	available	to	you.
Test	it	with		rustc	-v	.

Now	for	our	first	program.	Create	a	file,	copy	and	paste	the	following	into	it	and	save	it	as
	hello.rs		or	something	equally	imaginative.

fn	main()	{
				println!("Hello	world!");
}

Compile	this	using		rustc	hello.rs	,	and	then	run		./hello	.	It	should	display	the	expected
greeting	\o/

Two	compiler	options	you	should	know	are		-o	ex_name		to	specify	the	name	of	the
executable	and		-g		to	output	debug	info;	you	can	then	debug	as	expected	using	gdb	or	lldb,
etc.	Use		-h		to	show	other	options.

OK,	back	to	the	code.	A	few	interesting	points	-	we	use		fn		to	define	a	function	or	method.
	main()		is	the	default	entry	point	for	our	programs	(we'll	leave	program	args	for	later).	There
are	no	separate	declarations	or	header	files	as	with	C++.		println!		is	Rust's	equivalent	of
printf.	The		!		means	that	it	is	a	macro,	for	now	you	can	just	treat	it	like	a	regular	function.	A
subset	of	the	standard	library	is	available	without	needing	to	be	explicitly	imported/included
(we'll	talk	about	that	later).	The		println!		macros	is	included	as	part	of	that	subset.

Lets	change	our	example	a	little	bit:

fn	main()	{
				let	world	=	"world";
				println!("Hello	{}!",	world);
}

Rust	for	C++	Programmers

4Hello	world!



	let		is	used	to	introduce	a	variable,	world	is	the	variable	name	and	it	is	a	string	(technically
the	type	is		&'static	str	,	but	more	on	that	in	a	later	post).	We	don't	need	to	specify	the
type,	it	will	be	inferred	for	us.

Using		{}		in	the		println!		statement	is	like	using		%s		in	printf.	In	fact,	it	is	a	bit	more
general	than	that	because	Rust	will	try	to	convert	the	variable	to	a	string	if	it	is	not	one

already1.	You	can	easily	play	around	with	this	sort	of	thing	-	try	multiple	strings	and	using
numbers	(integer	and	float	literals	will	work).

If	you	like,	you	can	explicitly	give	the	type	of		world	:

let	world:	&'static	str	=	"world";

In	C++	we	write		T	x		to	declare	a	variable		x		with	type		T	.	In	Rust	we	write		x:	T	,
whether	in		let		statements	or	function	signatures,	etc.	Mostly	we	omit	explicit	types	in		let	
statements,	but	they	are	required	for	function	arguments.	Lets	add	another	function	to	see	it
work:

fn	foo(_x:	&'static	str)	->	&'static	str	{
				"world"
}

fn	main()	{
				println!("Hello	{}!",	foo("bar"));
}

The	function		foo		has	a	single	argument		_x		which	is	a	string	literal	(we	pass	it	"bar"	from
	main	).	We	don't	actually	use	that	argument	in		foo	.	Usually,	Rust	will	warn	us	about	this.
By	prefixing	the	argument	name	with		_		we	avoid	these	warnings.	In	fact,	we	don't	need	to
name	the	argument	at	all,	we	could	just	use		_	.

The	return	type	for	a	function	is	given	after		->	.	If	the	function	doesn't	return	anything	(a
void	function	in	C++),	we	don't	need	to	give	a	return	type	at	all	(as	in		main	).	If	you	want	to
be	super-explicit,	you	can	write		->	()	,		()		is	the	void	type	in	Rust.		foo		returns	a	string
literal.

You	don't	need	the		return		keyword	in	Rust,	if	the	last	expression	in	a	function	body	(or	any
other	body,	we'll	see	more	of	this	later)	is	not	finished	with	a	semicolon,	then	it	is	the	return
value.	So		foo		will	always	return	"world".	The		return		keyword	still	exists	so	we	can	do
early	returns.	You	can	replace		"world"		with		return	"world";		and	it	will	have	the	same
effect.

1

Rust	for	C++	Programmers

5Hello	world!



Click here to download full PDF material

https://www.computer-pdf.com/programming/c-cpp/530-tutorial-rust-for-c-programmers.html

