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Introduction
To	be	a	good	programmer	is	difficult	and	noble.	The	hardest	part	of	making	real	a	collective	vision	of	a	software	project	is
dealing	with	one's	coworkers	and	customers.	Writing	computer	programs	is	important	and	takes	great	intelligence	and	skill.
But	it	is	really	child's	play	compared	to	everything	else	that	a	good	programmer	must	do	to	make	a	software	system	that
succeeds	for	both	the	customer	and	myriad	colleagues	for	whom	she	is	partially	responsible.	In	this	essay	I	attempt	to
summarize	as	concisely	as	possible	those	things	that	I	wish	someone	had	explained	to	me	when	I	was	twenty-one.

This	is	very	subjective	and,	therefore,	this	essay	is	doomed	to	be	personal	and	somewhat	opinionated.	I	confine	myself	to
problems	that	a	programmer	is	very	likely	to	have	to	face	in	her	work.	Many	of	these	problems	and	their	solutions	are	so
general	to	the	human	condition	that	I	will	probably	seem	preachy.	I	hope	in	spite	of	this	that	this	essay	will	be	useful.

Computer	programming	is	taught	in	courses.	The	excellent	books:	The	Pragmatic	Programmer	[Prag99],	Code	Complete
[CodeC93],	Rapid	Development	[RDev96],	and	Extreme	Programming	Explained	[XP99]	all	teach	computer	programming
and	the	larger	issues	of	being	a	good	programmer.	The	essays	of	Paul	Graham	[PGSite]	and	Eric	Raymond	[Hacker]
should	certainly	be	read	before	or	along	with	this	article.	This	essay	differs	from	those	excellent	works	by	emphasizing
social	problems	and	comprehensively	summarizing	the	entire	set	of	necessary	skills	as	I	see	them.

In	this	essay	the	term	boss	is	used	to	refer	to	whomever	gives	you	projects	to	do.	I	use	the	words	business,	company,	and
tribe,	synonymously	except	that	business	connotes	moneymaking,	company	connotes	the	modern	workplace	and	tribe	is
generally	the	people	you	share	loyalty	with.

Welcome	to	the	tribe.
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