
1.1

1.2

1.2.1

1.2.1.1

1.2.1.2

1.2.1.3

1.2.1.4

1.2.1.5

1.2.1.6

1.2.1.7

1.2.1.8

1.2.1.9

1.2.1.10

1.2.1.11

1.2.1.12

1.2.2

1.2.2.1

1.2.2.2

1.2.2.3

1.2.2.4

1.2.2.5

1.2.2.6

1.2.2.7

1.2.2.8

1.2.2.9

1.2.2.10

1.2.2.11

1.3

1.3.1

1.3.1.1

1.3.1.2

1.3.1.3

1.3.1.4

1.3.1.5

1.3.1.6

1.3.1.7

1.3.1.8

1.3.1.9

1.3.1.10

Table	of	Contents
Introduction

Beginner

Personal	Skills

Learn	to	Debug

How	to	Debug	by	Splitting	the	Problem	Space

How	to	Remove	an	Error

How	to	Debug	Using	a	Log

How	to	Understand	Performance	Problems

How	to	Fix	Performance	Problems

How	to	Optimize	Loops

How	to	Deal	with	I/O	Expense

How	to	Manage	Memory

How	to	Deal	with	Intermittent	Bugs

How	to	Learn	Design	Skills

How	to	Conduct	Experiments

Team	Skills

Why	Estimation	is	Important

How	to	Estimate	Programming	Time

How	to	Find	Out	Information

How	to	Utilize	People	as	Information	Sources

How	to	Document	Wisely

How	to	Work	with	Poor	Code

How	to	Use	Source	Code	Control

How	to	Unit	Test

Take	Breaks	when	Stumped

How	to	Recognize	When	to	Go	Home

How	to	Deal	with	Difficult	People

Intermediate

Personal	Skills

How	to	Stay	Motivated

How	to	be	Widely	Trusted

How	to	Tradeoff	Time	vs.	Space

How	to	Stress	Test

How	to	Balance	Brevity	and	Abstraction

How	to	Learn	New	Skills

Learn	to	Type

How	to	Do	Integration	Testing

Communication	Languages

Heavy	Tools

1



1.3.1.11

1.3.2

1.3.2.1

1.3.2.2

1.3.2.3

1.3.2.4

1.3.2.5

1.3.3

1.3.3.1

1.3.3.2

1.3.3.3

1.3.3.4

1.3.3.5

1.3.3.6

1.3.3.7

1.3.3.8

1.4

1.4.1

1.4.1.1

1.4.1.2

1.4.1.3

1.4.2

1.4.2.1

1.4.2.2

1.4.2.3

1.4.3

1.4.3.1

1.4.3.2

1.4.3.3

1.4.3.4

1.4.3.5

1.4.3.6

1.4.3.7

1.4.3.8

1.4.3.9

1.4.3.10

1.4.3.11

1.5

1.6

1.7

How	to	analyze	data

Team	Skills

How	to	Manage	Development	Time

How	to	Manage	Third-Party	Software	Risks

How	to	Manage	Consultants

How	to	Communicate	the	Right	Amount

How	to	Disagree	Honestly	and	Get	Away	with	It

Judgment

How	to	Tradeoff	Quality	Against	Development	Time

How	to	Manage	Software	System	Dependence

How	to	Decide	if	Software	is	Too	Immature

How	to	Make	a	Buy	vs.	Build	Decision

How	to	Grow	Professionally

How	to	Evaluate	Interviewees

How	to	Know	When	to	Apply	Fancy	Computer	Science

How	to	Talk	to	Non-Engineers

Advanced

Technological	Judgment

How	to	Tell	the	Hard	From	the	Impossible

How	to	Utilize	Embedded	Languages

Choosing	Languages

Compromising	Wisely

How	to	Fight	Schedule	Pressure

How	to	Understand	the	User

How	to	Get	a	Promotion

Serving	Your	Team

How	to	Develop	Talent

How	to	Choose	What	to	Work	On

How	to	Get	the	Most	From	Your	Team-mates

How	to	Divide	Problems	Up

How	to	Handle	Boring	Tasks

How	to	Gather	Support	for	a	Project

How	to	Grow	a	System

How	to	Communicate	Well

How	to	Tell	People	Things	They	Don't	Want	to	Hear

How	to	Deal	with	Managerial	Myths

How	to	Deal	with	Organizational	Chaos

Appendix	A	*	Bibliography/Websiteography

Appendix	B	*	History	(As	of	January	2016)

Appendix	C	*	Contributions	(As	of	January	2016)

2



3



How	to	be	a	Programmer:	Community	Version
Robert	L.	Read	with	Community

Copyright	2002,	2003,	2016	Robert	L.	Read

Licensed	under	Creative	Commons	Attribution-ShareAlike	4.0	International	License.

Introduction
To	be	a	good	programmer	is	difficult	and	noble.	The	hardest	part	of	making	real	a	collective	vision	of	a	software	project	is
dealing	with	one's	coworkers	and	customers.	Writing	computer	programs	is	important	and	takes	great	intelligence	and	skill.
But	it	is	really	child's	play	compared	to	everything	else	that	a	good	programmer	must	do	to	make	a	software	system	that
succeeds	for	both	the	customer	and	myriad	colleagues	for	whom	she	is	partially	responsible.	In	this	essay	I	attempt	to
summarize	as	concisely	as	possible	those	things	that	I	wish	someone	had	explained	to	me	when	I	was	twenty-one.

This	is	very	subjective	and,	therefore,	this	essay	is	doomed	to	be	personal	and	somewhat	opinionated.	I	confine	myself	to
problems	that	a	programmer	is	very	likely	to	have	to	face	in	her	work.	Many	of	these	problems	and	their	solutions	are	so
general	to	the	human	condition	that	I	will	probably	seem	preachy.	I	hope	in	spite	of	this	that	this	essay	will	be	useful.

Computer	programming	is	taught	in	courses.	The	excellent	books:	The	Pragmatic	Programmer	[Prag99],	Code	Complete
[CodeC93],	Rapid	Development	[RDev96],	and	Extreme	Programming	Explained	[XP99]	all	teach	computer	programming
and	the	larger	issues	of	being	a	good	programmer.	The	essays	of	Paul	Graham	[PGSite]	and	Eric	Raymond	[Hacker]
should	certainly	be	read	before	or	along	with	this	article.	This	essay	differs	from	those	excellent	works	by	emphasizing
social	problems	and	comprehensively	summarizing	the	entire	set	of	necessary	skills	as	I	see	them.

In	this	essay	the	term	boss	is	used	to	refer	to	whomever	gives	you	projects	to	do.	I	use	the	words	business,	company,	and
tribe,	synonymously	except	that	business	connotes	moneymaking,	company	connotes	the	modern	workplace	and	tribe	is
generally	the	people	you	share	loyalty	with.

Welcome	to	the	tribe.

Contents
1.	 Beginner

Personal	Skills
Learn	to	Debug
How	to	Debug	by	Splitting	the	Problem	Space
How	to	Remove	an	Error
How	to	Debug	Using	a	Log
How	to	Understand	Performance	Problems
How	to	Fix	Performance	Problems
How	to	Optimize	Loops
How	to	Deal	with	I/O	Expense
How	to	Manage	Memory
How	to	Deal	with	Intermittent	Bugs
How	to	Learn	Design	Skills
How	to	Conduct	Experiments

Team	Skills
Why	Estimation	is	Important
How	to	Estimate	Programming	Time
How	to	Find	Out	Information
How	to	Utilize	People	as	Information	Sources

Introduction

4



How	to	Document	Wisely
How	to	Work	with	Poor	Code
How	to	Use	Source	Code	Control
How	to	Unit	Test
Take	Breaks	when	Stumped
How	to	Recognize	When	to	Go	Home
How	to	Deal	with	Difficult	People

2.	 Intermediate
Personal	Skills

How	to	Stay	Motivated
How	to	be	Widely	Trusted
How	to	Tradeoff	Time	vs.	Space
How	to	Stress	Test
How	to	Balance	Brevity	and	Abstraction
How	to	Learn	New	Skills
Learn	to	Type
How	to	Do	Integration	Testing
Communication	Languages
Heavy	Tools
How	to	analyze	data

Team	Skills
How	to	Manage	Development	Time
How	to	Manage	Third-Party	Software	Risks
How	to	Manage	Consultants
How	to	Communicate	the	Right	Amount
How	to	Disagree	Honestly	and	Get	Away	with	It

Judgment
How	to	Tradeoff	Quality	Against	Development	Time
How	to	Manage	Software	System	Dependence
How	to	Decide	if	Software	is	Too	Immature
How	to	Make	a	Buy	vs.	Build	Decision
How	to	Grow	Professionally
How	to	Evaluate	Interviewees
How	to	Know	When	to	Apply	Fancy	Computer	Science
How	to	Talk	to	Non-Engineers

3.	 Advanced
Technological	Judgment

How	to	Tell	the	Hard	From	the	Impossible
How	to	Utilize	Embedded	Languages
Choosing	Languages

Compromising	Wisely
How	to	Fight	Schedule	Pressure
How	to	Understand	the	User
How	to	Get	a	Promotion

Serving	Your	Team
How	to	Develop	Talent
How	to	Choose	What	to	Work	On
How	to	Get	the	Most	From	Your	Team-mates
How	to	Divide	Problems	Up
How	to	Handle	Boring	Tasks
How	to	Gather	Support	for	a	Project
How	to	Grow	a	System
How	to	Communicate	Well

Introduction

5



Click here to download full PDF material

https://www.computer-pdf.com/programming/534-tutorial-how-to-be-a-programmer.html

