
93

CHAPTER

“I’ve always loved that word, Boolean.”

—Claude Shannon

3
Boolean Algebra and
Digital Logic

3.1 INTRODUCTION

G
eorge Boole lived in England during the time Abraham Lincoln was getting
involved in politics in the United States. Boole was a mathematician and logi-

cian who developed ways of expressing logical processes using algebraic sym-
bols, thus creating a branch of mathematics known as symbolic logic, or Boolean
algebra. It wasn’t until years later that Boolean algebra was applied to computing
by John Vincent Atanasoff. He was attempting to build a machine based on the
same technology used by Pascal and Babbage, and wanted to use this machine to
solve linear algebraic equations. After struggling with repeated failures, Atanasoff
was so frustrated he decided to take a drive. He was living in Ames, Iowa, at the
time, but found himself 200 miles away in Illinois before he suddenly realized
how far he had driven.

Atanasoff had not intended to drive that far, but since he was in Illinois where
he could legally buy a drink in a tavern, he sat down, ordered a bourbon, and real-
ized he had driven quite a distance to get a drink! (Atanasoff reassured the author
that it was not the drink that led him to the following revelations—in fact, he left
the drink untouched on the table.) Exercising his physics and mathematics back-
grounds and focusing on the failures of his previous computing machine, he made
four critical breakthroughs necessary in the machine’s new design.

He would use electricity instead of mechanical movements (vacuum tubes
would allow him to do this).

Because he was using electricity, he would use base 2 numbers instead of
base 10 (this correlated directly with switches that were either “on” or “off ”),
resulting in a digital, rather than an analog, machine.

Null03 1/7/03 4:35 PM Page 93

94 Chapter 3 / Boolean Algebra and Digital Logic

He would use capacitors (condensers) for memory because they store electri-
cal charges with a regenerative process to avoid power leakage.

Computations would be done by what Atanasoff termed “direct logical
action” (which is essentially equivalent to Boolean algebra) and not by enumera-
tion as all previous computing machines had done.

It should be noted that at the time, Atanasoff did not recognize the application
of Boolean algebra to his problem and that he devised his own direct logical
action by trial and error. He was unaware that in 1938, Claude Shannon proved
that two-valued Boolean algebra could describe the operation of two-valued elec-
trical switching circuits. Today, we see the significance of Boolean algebra’s
application in the design of modern computing systems. It is for this reason that
we include a chapter on Boolean logic and its relationship to digital computers.

This chapter contains a brief introduction to the basics of logic design. It pro-
vides minimal coverage of Boolean algebra and this algebra’s relationship to
logic gates and basic digital circuits. You may already be familiar with the basic
Boolean operators from a previous programming class. It is a fair question, then,
to ask why you must study this material in more detail. The relationship between
Boolean logic and the actual physical components of any computer system is
very strong, as you will see in this chapter. As a computer scientist, you may
never have to design digital circuits or other physical components—in fact, this
chapter will not prepare you to design such items. Rather, it provides sufficient
background for you to understand the basic motivation underlying computer
design and implementation. Understanding how Boolean logic affects the design
of various computer system components will allow you to use, from a program-
ming perspective, any computer system more effectively. For the interested
reader, there are many resources listed at the end of the chapter to allow further
investigation into these topics.

3.2 BOOLEAN ALGEBRA

Boolean algebra is an algebra for the manipulation of objects that can take on
only two values, typically true and false, although it can be any pair of values.
Because computers are built as collections of switches that are either “on” or
“off,” Boolean algebra is a very natural way to represent digital information. In
reality, digital circuits use low and high voltages, but for our level of understand-
ing, 0 and 1 will suffice. It is common to interpret the digital value 0 as false and
the digital value 1 as true.

3.2.1 Boolean Expressions

In addition to binary objects, Boolean algebra also has operations that can be per-
formed on these objects, or variables. Combining the variables and operators
yields Boolean expressions. A Boolean function typically has one or more input
values and yields a result, based on these input values, in the range {0,1}.

Three common Boolean operators are AND, OR, and NOT. To better under-
stand these operators, we need a mechanism to allow us to examine their behav-

Null03 1/7/03 4:35 PM Page 94

3.2 / Boolean Algebra 95

Inputs Outputs

xy

0

0

0

x

0

0

1

11

y

0

1

0

1

TABLE 3.1 The Truth Table

for AND

Inputs Outputs

x + y

0

1

1

x

0

0

1

11

y

0

1

0

1

TABLE 3.2 The Truth Table

for OR

iors. A Boolean operator can be completely described using a table that lists the
inputs, all possible values for these inputs, and the resulting values of the opera-
tion for all possible combinations of these inputs. This table is called a truth
table. A truth table shows the relationship, in tabular form, between the input val-
ues and the result of a specific Boolean operator or function on the input vari-
ables. Let’s look at the Boolean operators AND, OR, and NOT to see how each is
represented, using both Boolean algebra and truth tables.

The logical operator AND is typically represented by either a dot or no sym-
bol at all. For example, the Boolean expression xy is equivalent to the expression
x · y and is read “x and y.” The expression xy is often referred to as a Boolean
product. The behavior of this operator is characterized by the truth table shown in
Table 3.1.

The result of the expression xy is 1 only when both inputs are 1, and 0 other-
wise. Each row in the table represents a different Boolean expression, and all pos-
sible combinations of values for x and y are represented by the rows in the table.

The Boolean operator OR is typically represented by a plus sign. Therefore,
the expression x + y is read “x or y.” The result of x + y is 0 only when both of its
input values are 0. The expression x + y is often referred to as a Boolean sum. The
truth table for OR is shown in Table 3.2.

The remaining logical operator, NOT, is represented typically by either an
overscore or a prime. Therefore, both x� and x� are read as “NOT x.” The truth
table for NOT is shown in Table 3.3.

We now understand that Boolean algebra deals with binary variables and log-
ical operations on those variables. Combining these two concepts, we can exam-
ine Boolean expressions composed of Boolean variables and multiple logic
operators. For example, the Boolean function:

F(x, y, z) = x + y�z

Inputs Outputs

x

1

0

x

0

1

TABLE 3.3 The Truth Table for NOT

Null03 1/7/03 4:35 PM Page 95

96 Chapter 3 / Boolean Algebra and Digital Logic

Inputs

yz

1

1

y

0

0

01

01

10

10

01

0

0

1

0

0

0

1

0

01

0

1

0

1

0

1

0

1

0

0

0

0

1

1

1

1

x z

Outputs

x + yz = F

0

1

0

0

1

1

1

1

y

TABLE 3.4 The Truth Table for F(x,y,z) = x + y–z

is represented by a Boolean expression involving the three Boolean variables x, y,
and z and the logical operators OR, NOT, and AND. How do we know which oper-
ator to apply first? The rules of precedence for Boolean operators give NOT top
priority, followed by AND, and then OR. For our previous function F, we would
negate y first, then perform the AND of y� and z, and lastly OR this result with x.

We can also use a truth table to represent this expression. It is often helpful,
when creating a truth table for a more complex function such as this, to build the
table representing different pieces of the function, one column at a time, until the
final function can be evaluated. The truth table for our function F is shown in
Table 3.4.

The last column in the truth table indicates the values of the function for all
possible combinations of x, y, and z. We note that the real truth table for our func-
tion F consists of only the first three columns and the last column. The shaded
columns show the intermediate steps necessary to arrive at our final answer. Cre-
ating truth tables in this manner makes it easier to evaluate the function for all
possible combinations of the input values.

3.2.2 Boolean Identities

Frequently, a Boolean expression is not in its simplest form. Recall from algebra
that an expression such as 2x + 6x is not in its simplest form; it can be reduced
(represented by fewer or simpler terms) to 8x. Boolean expressions can also be
simplified, but we need new identities, or laws, that apply to Boolean algebra
instead of regular algebra. These identities, which apply to single Boolean vari-
ables as well as Boolean expressions, are listed in Table 3.5. Note that each rela-
tionship (with the exception of the last one) has both an AND (or product) form
and an OR (or sum) form. This is known as the duality principle.

The Identity Law states that any Boolean variable ANDed with 1 or ORed
with 0 simply results in the original variable. (1 is the identity element for AND;
0 is the identity element for OR.) The Null Law states that any Boolean variable
ANDed with 0 is 0, and a variable ORed with 1 is always 1. The Idempotent Law
states that ANDing or ORing a variable with itself produces the original variable.
The Inverse Law states that ANDing or ORing a variable with its complement

Null03 1/7/03 4:35 PM Page 96

3.2 / Boolean Algebra 97

Identity Name AND Form

Null (or Dominance) Law

Idempotent Law

Inverse Law

Commutative Law

Associative Law

Distributive Law

Absorption Law

DeMorgan’s Law

Double Complement Law

Identity Law

OR Form

1x = x

0x = 0

xx = x

xx = 0

xy = yx

(xy)z = x(yz)

x+yz = (x+y)(x+z)

x(x+y) = x

(xy) = x+y

0+x = x

1+x = 1

x+x = x

x+x = 1

x+y = y+x

(x+y)+z = x+(y+z)

x (y+z) = xy+xz

x+xy = x

(x+y) = xy

x = x

TABLE 3.5 Basic Identities of Boolean Algebra

x

0

0

1

1

y

0

1

0

1

(xy)

0

0

0

1

(xy)

1

1

1

0

x

1

1

0

0

y

1

0

1

0

x +y

1

1

1

0

TABLE 3.6 Truth Tables for the AND Form of DeMorgan’s Law

produces the identity for that given operation. You should recognize the Commu-
tative Law and Associative Law from algebra. Boolean variables can be
reordered (commuted) and regrouped (associated) without affecting the final
result. The Distributive Law shows how OR distributes over AND and vice versa.

The Absorption Law and DeMorgan’s Law are not so obvious, but we can
prove these identities by creating a truth table for the various expressions: If the
right-hand side is equal to the left-hand side, the expressions represent the same
function and result in identical truth tables. Table 3.6 depicts the truth table for
both the left-hand side and the right-hand side of DeMorgan’s Law for AND. It is
left as an exercise to prove the validity of the remaining laws, in particular, the
OR form of DeMorgan’s Law and both forms of the Absorption Law.

The Double Complement Law formalizes the idea of the double negative,
which evokes rebuke from high school teachers. The Double Complement Law can
be useful in digital circuits as well as in your life. For example, let x be the amount
of cash you have (assume a positive quantity). If you have no cash, you have x�.
When an untrustworthy acquaintance asks to borrow some cash, you can truthfully
say that you don’t have no money. That is, x = (x��) even if you just got paid.

One of the most common errors that beginners make when working with
Boolean logic is to assume the following:

(x��y�) = x� y� Please note that this is not a valid equality!

DeMorgan’s Law clearly indicates that the above statement is incorrect; however,
it is a very easy mistake to make, and one that should be avoided.

Null03 1/7/03 4:35 PM Page 97

Click here to download full PDF material

https://www.computer-pdf.com/architecture/555-tutorial-boolean-algebra-and-digital-logic.html

