


1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1.10

1.11

1.12

1.13

1.14

1.15

1.16

1.17

1.18

1.19

1.20

1.21

Table	of	Contents
Introduction

Introduction	about	the	x86	architecture	and	about	our	OS

Setup	the	development	environment

First	boot	with	GRUB

Backbone	of	the	OS	and	C++	runtime

Base	classes	for	managing	x86	architecture

GDT

IDT	and	interrupts

Theory:	physical	and	virtual	memory

Memory	management:	physical	and	virtual

Process	management	and	multitasking

External	program	execution:	ELF	files

Userland	and	syscalls

Modular	drivers

Some	basics	modules:	console,	keyboard

IDE	Hard	disks

DOS	Partitions

EXT2	read-only	filesystems

Standard	C	library	(libC)

UNIX	basic	tools:	sh,	cat

Lua	interpreter

2



How	to	Make	a	Computer	Operating
System
Online	book	about	how	to	write	a	computer	operating	system	in	C/C++	from	scratch.

Caution:	This	repository	is	a	remake	of	my	old	course.	It	was	written	several	years	ago	as
one	of	my	first	projects	when	I	was	in	High	School,	I'm	still	refactoring	some	parts.	The
original	course	was	in	French	and	I'm	not	an	English	native.	I'm	going	to	continue	and
improve	this	course	in	my	free-time.

Book:	An	online	version	is	available	at	http://samypesse.gitbooks.io/how-to-create-an-
operating-system/	(PDF,	Mobi	and	ePub).	It	was	generated	using	GitBook.

Source	Code:	All	the	system	source	code	will	be	stored	in	the	src	directory.	Each	step	will
contain	links	to	the	different	related	files.

Contributions:	This	course	is	open	to	contributions,	feel	free	to	signal	errors	with	issues	or
directly	correct	the	errors	with	pull-requests.

Questions:	Feel	free	to	ask	any	questions	by	adding	issues	or	commenting	sections.

You	can	follow	me	on	Twitter	@SamyPesse	or	GitHub.

What	kind	of	OS	are	we	building?

The	goal	is	to	build	a	very	simple	UNIX-based	operating	system	in	C++,	not	just	a	"proof-of-
concept".	The	OS	should	be	able	to	boot,	start	a	userland	shell,	and	be	extensible.

Introduction

3



Introduction

4



Chapter	1:	Introduction	to	the	x86	architecture
and	about	our	OS

What	is	the	x86	architecture?

The	term	x86	denotes	a	family	of	backward	compatible	instruction	set	architectures
based	on	the	Intel	8086	CPU.

The	x86	architecture	is	the	most	common	instruction	set	architecture	since	its	introduction	in
1981	for	the	IBM	PC.	A	large	amount	of	software,	including	operating	systems	(OS's)	such
as	DOS,	Windows,	Linux,	BSD,	Solaris	and	Mac	OS	X,	function	with	x86-based	hardware.

In	this	course	we	are	not	going	to	design	an	operating	system	for	the	x86-64	architecture	but
for	x86-32,	thanks	to	backward	compatibility,	our	OS	will	be	compatible	with	our	newer	PCs
(but	take	caution	if	you	want	to	test	it	on	your	real	machine).

Our	Operating	System

The	goal	is	to	build	a	very	simple	UNIX-based	operating	system	in	C++,	but	the	goal	is	not	to
just	build	a	"proof-of-concept".	The	OS	should	be	able	to	boot,	start	a	userland	shell	and	be
extensible.

The	OS	will	be	built	for	the	x86	architecture,	running	on	32	bits,	and	compatible	with	IBM
PCs.

Specifications:

Code	in	C++
x86,	32	bit	architecture
Boot	with	Grub
Kind	of	modular	system	for	drivers
Kind	of	UNIX	style
Multitasking
ELF	executable	in	userland
Modules	(accessible	in	userland	using	/dev/...)	:

IDE	disks
DOS	partitions
Clock
EXT2	(read	only)
Boch	VBE

Userland	:

Introduction	about	the	x86	architecture	and	about	our	OS

5



Click here to download full PDF material

https://www.computer-pdf.com/operating-system/558-tutorial-how-to-make-a-computer-operating-system.html

