


1.1

1.1.1

1.1.2

1.1.3

1.1.4

1.1.5

1.1.6

1.1.7

1.2

1.2.1

1.2.2

1.2.3

1.3

1.3.1

1.3.2

1.3.3

1.4

1.4.1

1.4.2

1.4.3

1.5

1.5.1

1.5.2

1.5.3

1.5.4

1.5.5

1.5.6

Table	of	Contents
Introduction

Code	Generation	vs	C++	Library

Main	Challenges

Goal

Audience

Code	Examples

Final	Outcome

Contribution

Message

Reading	and	Writing

Dispatching	and	Handling

Extending	Interface

Fields

Automating	Basic	Operations

Working	With	Fields

Common	Field	Types

Generic	Library

Generalising	Message	Interface

Generalising	Message	Implementation

Generalising	Fields	Implementation

Transport

PAYLOAD	Layer

ID	Layer

SIZE	Layer

SYNC	Layer

CHECKSUM	Layer

Defining	Protocol	Stack

2



1.6

1.7

1.7.1

1.7.2

1.7.3

1.7.4

1.7.5

Achievements

Appendices

Appendix	A	-	tupleForEach

Appendix	B	-	tupleAccumulate

Appendix	C	-	tupleForEachFromUntil

Appendix	D	-	tupleForEachType

Appendix	E	-	AlignedUnion

3



Guide	to	Implementing	Communication
Protocols	in	C++	(for	Embedded	Systems)
Almost	every	electronic	device/component	nowadays	has	to	be	able	to
communicate	to	other	devices,	components,	or	outside	world	over	some	I/O	link.
Such	communication	is	implemented	using	various	communication	protocols.

At	first	glance	the	implementation	of	communication	protocols	seems	to	be	quite
an	easy	and	straightforward	process.	Every	message	has	predefined	fields,	that
need	to	be	serialised	and	deserialised	according	to	the	protocol	specification.
Every	serialised	message	is	wrapped	in	a	transport	data	to	ensure	a	safe	delivery
to	the	other	end	over	some	I/O	link.	However,	there	are	multiple	pitfalls	and	wrong
design	choices	that	can	lead	to	a	cumbersome,	bloated,	and	difficult	to	maintain
source	code.	It	becomes	especially	noticable	when	the	development	of	the
product	progresses,	and	initially	developed	small	communication	protocol	grows
to	contain	many	more	messages	than	initially	planned.	Adding	a	new	message	in
such	state	can	become	a	tedious,	time	consuming	and	error-prone	process.

This	book	suggests	flexible,	generic	and	easily	extendable	design	architecture,
which	allows	creation	of	a	generic	C++(11)	library.	This	library	may	be	used	later
on	to	implement	many	binary	communication	protocols	using	simple	declarative
statements	of	class	and	type	definitions.

As	stated	in	the	book's	title,	the	main	focus	of	this	book	is	a	development	for
embedded	systems	(including	bare-metal	ones).	There	is	no	use	of	RTTI	and/or
exceptions.	I	also	make	a	significant	effort	to	minimise	usage	of	dynamic	memory
allocation	and	provide	means	to	exclude	it	altogether	if	needed.	All	the	presented
techniques	and	design	choices	are	also	applicable	to	non-embedded	systems
which	don't	have	limitations	of	the	latter.

This	work	is	licensed	under	the	Creative	Commons	Attribution-NonCommercial-
ShareAlike	4.0	International	License.

Introduction

4



Introduction

5



Click here to download full PDF material

https://www.computer-pdf.com/programming/c-cpp/573-tutorial-implementing-communication-protocols-in-c.html

