SECTION 1-4 Absolute Value in Equations and Inequalities

- Absolute Value and Distance
- Absolute Value in Equations and Inequalities
- Absolute Value and Radicals

This section discusses solving absolute value equations and inequalities.

Absolute Value and Distance

We start with a geometric definition of absolute value. If *a* is the coordinate of a point on a real number line, then the distance from the origin to *a* is represented by |a| and is referred to as the **absolute value** of *a*. Thus, |5| = 5, since the point with coordinate 5 is five units from the origin, and |-6| = 6, since the point with coordinate -6 is six units from the origin (Fig.1).

FIGURE 1 Absolute value.

 \bigcirc

Symbolically, and more formally, we define absolute value as follows:

DEFINITION 1 Absolute Value

 $|x| = \begin{cases} x & \text{if } x \ge 0 \quad |4| = 4 \\ -x & \text{if } x < 0 \quad |-3| \quad |-(-3)| = 3 \end{cases}$

[*Note:* -x is positive if x is negative.]

Both the geometric and nongeometric definitions of absolute value are useful, as will be seen in the material that follows. Remember:

The absolute value of a number is never negative.

EXAM PLE 1	Absolute Value of a Real Number		
	(A) $ \pi - 3 = \pi - 3$ (B) $ 3 - \pi = -(3 - \pi) = \pi - 3$ Since $\pi \approx 3.14, \pi - 3$ is positive. Since $3 - \pi$ is negative		
Matched Problem 1	Write without the absolute value sign:		
	(A) $ 8 $ (B) $ \sqrt[3]{9} - 2 $ (C) $ -\sqrt{2} $ (D) $ 2 - \sqrt[3]{9} $		

Following the same reasoning used in Example 1, the next theorem can be proved (see Problem 79 in Exercise 1-4).

Theorem 1

For all real numbers a and b,

|b - a| = |a - b|

We use this result in defining the distance between two points on a real number line.

DEFINITION 2 Distance between Points A and B

Let A and B be two points on a real number line with coordinates a and b, respectively. The **distance between** A and B is given by

$$d(A, B) = |b - a|$$

This distance is also called the length of the line segment joining A and B.

EXAMPLE 2 Distance between Points on a Number Line

Find the distance between points A and B with coordinates a and b, respectively, as given.

(A) a = 4, b = 9 (B) a = 9, b = 4 (C) a = 0, b = 6

Solutions (A) (A, B) = |9 - 4| = |5| = 5A = 5 B = 10

(B)
$$(B) = |A - 9| = |-5| = 5$$

 $B = 5$
 $B = 5$
 $A = 10$

It should be clear, since |b - a| = |a - b|, that

$$d(A, B) = d(B, A)$$

Hence, in computing the distance between two points on a real number line, it does not matter how the two points are labeled—point A can be to the left or to the right of point B. Note also that if A is at the origin O, then

d(O, B) = |b - 0| = |b|

Matched Problem 2 Use the number line below to find the indicated distances.

• Absolute Value in Equations and Inequalities involving absolute value. For example, the algebraic statement

$$|x - 1| = 2$$

can be interpreted geometrically as stating that the distance from x to 1 is 2.

EXPLORE-DISCUSS 1	Write geometric interpretations of the following algebraic statements:		
	(A) $ x - 1 < 2$	(B) $0 < x - 1 < 2$	(C) $ x - 1 > 2$

EXAM PLE 3 Solving Absolute Value Problems Geometrically

Interpret geometrically, solve, and graph. Write solutions in both inequality and interval notation, where appropriate.

(A) |x-3| = 5 (B) |x-3| < 5(C) 0 < |x-3| < 5 (D) |x-3| > 5

Solutions

ions (A) Geometrically, |x - 3| represents the distance between x and 3. Thus, in |x - 3| = 5, x is a number whose distance from 3 is 5. That is,

 $x = 3 \pm 5 = -2$ or 8

The solution set is $\{-2, 8\}$. This *is not* interval notation.

(B) Geometrically, in |x - 3| < 5, x is a number whose distance from 3 is less than 5; that is,

$$-2 < x < 8$$

The solution set is (-2, 8). This *is* interval notation.

(C) The form 0 < |x - 3| < 5 is frequently encountered in calculus and more advanced mathematics. Geometrically, x is a number whose distance from 3 is less than 5, but x cannot equal 3. Thus,

(D) Geometrically, in |x - 3| > 5, x is a number whose distance from 3 is greater than 5; that is,

CAUTION

Do not confuse solutions like

$$-2 < x$$
 and $x < 8$

which can also be written as

$$-2 < x < 8$$
 or $(-2, 8)$

with solutions like

$$x < -2$$
 or $x > 8$

which cannot be written as a double inequality or as a single interval.

We summarize the preceding results in Table 1.

Equations and inequalities				
Form $(d > 0)$	Geometric interpretation	Solution	Graph	
x-c =d	Distance between x and c is equal to d .	$\{c-d, c+d\}$	d d d $c - d c c + d$	
x-c < d	Distance between x and c is less than d .	(c-d,c+d)	$(+) \rightarrow x$	
0 < x - c < d	Distance between x and c is less than d, but $x \neq c$.	$(c-d, c) \cup (c, c+d)$	$ \begin{array}{c c} \hline & & \\ \hline & & \\ \hline & & \\ c-d & c & c+d \end{array} $	
x-c > d	Distance between x and c is greater than d .	$(-\infty, c - d) \cup (c + d, \infty)$	$ \begin{array}{c c} & & \\ \hline \\ c - d & c & c + d \end{array} $	

TABLE 1 Geometric Interpretation of Absolute Value Equations and Inequalities

Matched Problem 3 Interpret geometrically, solve, and graph. Write solutions in both inequality and interval notation, where appropriate.

(A) |x + 2| = 6(B) |x + 2| < 6(C) 0 < |x + 2| < 6(D) |x + 2| > 6[*Hint:* |x + 2| = |x - (-2)|.]

EXPLORE-DISCUSS 2	Describe the set of numbers that satisfies each of the following:			
	(A) $2 > x > 1$ (C) $2 < x > 1$	(B) $2 > x < 1$ (D) $2 < x < 1$		
	Explain why it is bols pointing in d all inequality sym	never necessary to use double inequalities with inequality sym- ifferent directions. Standard mathematical notation requires that bols in an expression must point in the same direction.		

Reasoning geometrically as before (noting that |x| = |x - 0|) leads to Theorem 2.

Click here to download full PDF material