INTRODUCTION TO REAL ANALYSIS

William F. Trench

Andrew G. Cowles Distinguished Professor Emeritus Department of Mathematics Trinity University San Antonio, Texas, USA wtrench@trinity.edu

This book has been judged to meet the evaluation criteria set by the Editorial Board of the American Institute of Mathematics in connection with the Institute's Open Textbook Initiative. It may be copied, modified, redistributed, translated, and built upon subject to the Creative Commons

Attribution-NonCommercial-ShareAlike 3.0 Unported License.

FREE DOWNLOADABLE SUPPLEMENTS

FUNCTIONS DEFINED BY IMPROPER INTEGRALS

THE METHOD OF LAGRANGE MULTIPLIERS

```
Library of Congress Cataloging-in-Publication Data

Trench, William F.

Introduction to real analysis / William F. Trench

p. cm.

ISBN 0-13-045786-8

1. Mathematical Analysis. I. Title.

QA300.T667 2003

515-dc21 2002032369
```

Free Hyperlinked Edition 2.04 December 2013

This book was published previously by Pearson Education.

This free edition is made available in the hope that it will be useful as a textbook or reference. Reproduction is permitted for any valid noncommercial educational, mathematical, or scientific purpose. However, charges for profit beyond reasonable printing costs are prohibited.

A complete instructor's solution manual is available by email to wtrench@trinity.edu, subject to verification of the requestor's faculty status. Although this book is subject to a Creative Commons license, the solutions manual is not. The author reserves all rights to the manual.

TO BEVERLY

Contents

Prefa	ce	vi	
Chapter 1 The Real Numbers		1	
1.1	The Real Number System	1	
1.2	Mathematical Induction	10	
1.3	The Real Line	19	
Chapter 2 Differential Calculus of Functions of One Variable 30			
2.1	Functions and Limits	30	
2.2	Continuity	53	
2.3	Differentiable Functions of One Variable	73	
2.4	L'Hospital's Rule	88	
2.5	Taylor's Theorem	98	
Chapter 3 Integral Calculus of Functions of One Variable 1		113	
3.1	Definition of the Integral	113	
3.2	Existence of the Integral	128	
3.3	Properties of the Integral	135	
3.4	Improper Integrals	151	
3.5	A More Advanced Look at the Existence		
	of the Proper Riemann Integral	171	
Chapter 4 Infinite Sequences and Series 1		178	
4.1	Sequences of Real Numbers	179	
4.2	Earlier Topics Revisited With Sequences	195	
4.3	Infinite Series of Constants	200	

(Contents	v
4.4 Sequences and Series of Functions 4.5 Power Series	23 23	34 57
Chapter 5 Real-Valued Functions of Several Variables	28	81
5.1 Structure of ℝ ⁿ	28	81
5.2 Continuous Real-Valued Function of n Variables	30)2
5.3 Partial Derivatives and the Differential	3	16
5.4 The Chain Rule and Taylor's Theorem	33	39
Chapter 6 Vector-Valued Functions of Several Variable	es 36	61
6.1 Linear Transformations and Matrices	36	61
6.2 Continuity and Differentiability of Transformations	37	78
6.3 The Inverse Function Theorem	39	94
6.4. The Implicit Function Theorem	41	17
Chapter 7 Integrals of Functions of Several Variables	43	35
7.1 Definition and Existence of the Multiple Integral	43	35
7.2 Iterated Integrals and Multiple Integrals	46	62
7.3 Change of Variables in Multiple Integrals	48	34
Chapter 8 Metric Spaces	51	18
8.1 Introduction to Metric Spaces	51	18
8.2 Compact Sets in a Metric Space	53	35
8.3 Continuous Functions on Metric Spaces	5 4	43
Answers to Selected Exercises		49

Index

563

Click here to download full PDF material