An Introduction to Real Analysis

John K. Hunter¹

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA AT DAVIS

 $^{^1\}mathrm{The}$ author was supported in part by the NSF. Thanks to Janko Gravner for a number of corrections and comments.

ABSTRACT. These are some notes on introductory real analysis. They cover the properties of the real numbers, sequences and series of real numbers, limits of functions, continuity, differentiability, sequences and series of functions, and Riemann integration. They don't include multi-variable calculus or contain any problem sets. Optional sections are starred.

© John K. Hunter, 2014

Contents

Chapte	r 1. Sets and Functions	1
1.1.	Sets	1
1.2.	Functions	5
1.3.	Composition and inverses of functions	7
1.4.	Indexed sets	8
1.5.	Relations	11
1.6.	Countable and uncountable sets	14
Chapter	r 2. Numbers	21
2.1.	Integers	22
2.2.	Rational numbers	23
2.3.	Real numbers: algebraic properties	25
2.4.	Real numbers: ordering properties	26
2.5.	The supremum and infimum	27
2.6.	Real numbers: completeness	29
2.7.	Properties of the supremum and infimum	31
Chapter	r 3. Sequences	35
3.1.	The absolute value	35
3.2.	Sequences	36
3.3.	Convergence and limits	39
3.4.	Properties of limits	43
3.5.	Monotone sequences	45
3.6.	The lim sup and lim inf	48
3.7.	Cauchy sequences	54
3.8.	Subsequences	55

3.9.	The Bolzano-Weierstrass theorem	57
Chapte	r 4. Series	59
4.1.	Convergence of series	59
4.2.	The Cauchy condition	62
4.3.	Absolutely convergent series	64
4.4.	The comparison test	66
4.5.	* The Riemann ζ -function	68
4.6.	The ratio and root tests	69
4.7.	Alternating series	71
4.8.	Rearrangements	73
4.9.	The Cauchy product	77
4.10.	* Double series	78
4.11.	* The irrationality of e	86
Chapte	r 5. Topology of the Real Numbers	89
5.1.	Open sets	89
5.2.	Closed sets	92
5.3.	Compact sets	95
5.4.	Connected sets	102
5.5.	* The Cantor set	104
Chapte	r 6. Limits of Functions	109
6.1.	Limits	109
6.2.	Left, right, and infinite limits	114
6.3.	Properties of limits	117
Chapte	r 7. Continuous Functions	121
7.1.	Continuity	121
7.2.	Properties of continuous functions	125
7.3.	Uniform continuity	127
7.4.	Continuous functions and open sets	129
7.5.	Continuous functions on compact sets	131
7.6.	The intermediate value theorem	133
7.7.	Monotonic functions	136
Chapte	r 8. Differentiable Functions	139
8.1.	The derivative	139
8.2.	Properties of the derivative	145
8.3.	The chain rule	147
8.4.	Extreme values	150
8.5.	The mean value theorem	152

8.6.	Taylor's theorem	154
8.7.	* The inverse function theorem	157
8.8.	* L'Hôspital's rule	162
Chapter	9. Sequences and Series of Functions	167
9.1.	Pointwise convergence	167
9.2.	Uniform convergence	169
9.3.	Cauchy condition for uniform convergence	170
9.4.	Properties of uniform convergence	171
9.5.	Series	175
Chapter	10. Power Series	181
10.1.	Introduction	181
10.2.	Radius of convergence	182
10.3.	Examples of power series	184
10.4.	Algebraic operations on power series	188
10.5.	Differentiation of power series	193
10.6.	The exponential function	195
10.7.	* Smooth versus analytic functions	197
Chapter	11. The Riemann Integral	205
11.1.	The supremum and infimum of functions	206
11.2.	Definition of the integral	208
11.3.	The Cauchy criterion for integrability	215
11.4.	Continuous and monotonic functions	219
11.5.	Linearity, monotonicity, and additivity	222
11.6.	Further existence results	230
11.7.	* Riemann sums	234
11.8.	* The Lebesgue criterion	238
Chapter	12. Properties and Applications of the Integral	241
12.1.	The fundamental theorem of calculus	241
12.2.	Consequences of the fundamental theorem	246
12.3.	Integrals and sequences of functions	251
12.4.	Improper Riemann integrals	255
12.5.	* Principal value integrals	261
12.6.	The integral test for series	265
12.7.	Taylor's theorem with integral remainder	268
Chapter	13. Metric, Normed, and Topological Spaces	271
13.1.	Metric spaces	271
13.2.	Normed spaces	276

Click here to download full PDF material