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The cover illustration, Square Squared by Robert Chaffer, shows two superimposed images. The

foreground image represents the result of applying a transformation, z 7→ z2 (see Exercises 3.53

and 3.54), to the background image. The locally conformable property of this mapping can be

observed through matching the line segments, angles, and Sierpinski triangle features of the

background image with their respective images in the foreground figure. (The foreground figure is

scaled down to about 40% and repositioned to accommodate artistic and visibility considerations.)

The background image fills the square with vertices at 0, 1, 1 + i, and i (the positive direction

along the imaginary axis is chosen as downward). It was prepared by using Michael Barnsley’s

chaos game, capitalizing on the fact that a square is self tiling, and by using a fractal-coloring

method. (The original art piece is in color.) A subset of the image is seen as a standard Sierpinski

triangle. The chaos game was also re-purposed to create the foreground image.



“And what is the use of a book,” thought Alice, “without pictures or conversations?”

Lewis Carroll (Alice in Wonderland)

About this book. A First Course in Complex Analysis was written for a one-semester undergradu-

ate course developed at Binghamton University (SUNY) and San Francisco State University, and

has been adopted at several other institutions. For many of our students, Complex Analysis is

their first rigorous analysis (if not mathematics) class they take, and this book reflects this very

much. We tried to rely on as few concepts from real analysis as possible. In particular, series and

sequences are treated from scratch, which has the consequence that power series are introduced

late in the course. The goal our book works toward is the Residue Theorem, including some

nontraditional applications from both continuous and discrete mathematics.

A printed paperback version of this open textbook is available from Orthogonal Publishing

(www.orthogonalpublishing.com) or your favorite online bookseller.

About the authors. Matthias Beck is a professor in the Mathematics Department at San Francisco

State University. His research interests are in geometric combinatorics and analytic number theory.

He is the author of two other books, Computing the Continuous Discretely: Ingeger-point Enumeration
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A Note to Instructors. The material in this book should be more than enough for a typical

semester-long undergraduate course in complex analysis; our experience taught us that there is

more content in this book than fits into one semester. Depending on the nature of your course and

its place in your department’s overall curriculum, some sections can be either partially omitted

or their definitions and theorems can be assumed true without delving into proofs. Chapter 10



contains optional longer homework problems that could also be used as group projects at the end

of a course.

We would be happy to hear from anyone who has adopted our book for their course, as well

as suggestions, corrections, or other comments.
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