MATHEMATICAL ANALYSIS I (DIFFERENTIAL CALCULUS) FOR ENGINEERS AND BEGINNING MATHEMATICIANS

SEVER ANGEL POPESCU

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCES, TECH-NICAL UNIVERSITY OF CIVIL ENGINEERING BUCHAREST, B-UL LACUL TEI 124, RO 020396, SECTOR 2, BUCHAREST 38, ROMANIA. *E-mail address:* angel.popescu@gmail.com *To my family.* To those unknown people who by hard and honest working make possible our daily life of thinking.

Contents

Prefa	ice	5
Chapter 1. The real line.		1
1.	The real line. Sequences of real numbers	1
2.	Sequences of complex numbers	27
3.	Problems	29
Chapter 2. Series of numbers		31
1.	Series with nonnegative real numbers	31
2.	Series with arbitrary terms	46
3.	Approximate computations	51
4.	Problems	53
Chapter 3. Sequences and series of functions		55
1.	Continuous and differentiable functions	55
2.	Sequences and series of functions	65
3.	Problems	76
Chapter 4. Taylor series		79
1.	Taylor formula	79
2.	Taylor series	89
3.	Problems	93
Chapter 5. Power series		95
1.	Power series on the real line	95
2.	Complex power series and Euler formulas	102
3.	Problems	107
Chapter 6. The normed space \mathbb{R}^m .		109
1.	Distance properties in \mathbb{R}^m	109
2.	Continuous functions of several variables	120
3.	Continuous functions on compact sets	126
4.	Continuous functions on connected sets	133
5.	The Riemann's sphere	136
6.	Problems	137

CONTENTS

4

Chapter	7. Partial derivatives. Differentiability.	141
1. Pa	artial derivatives. Differentiability.	141
2. Cł	hain rules	153
3. Pr	roblems	163
Chapter	8. Taylor's formula for several variables.	167
1. Hi	igher partial derivatives. Differentials of order k .	167
2. Cł	hain rules in two variables	177
3. Ta	aylor's formula for several variables	180
4. Pr	roblems	185
Chapter	9. Contractions and fixed points	187
1. Ba	anach's fixed point theorem	187
2. Pr	roblems	191
Chapter 10. Local extremum points		193
1. Lo	ocal extremum points for many variables	193
2. Pr	roblems	199
Chapter	11. Implicitly defined functions	201
1. Lo	ocal Inversion Theorem	201
2. In	aplicit functions	204
3. Fu	inctional dependence	210
4. Co	onditional extremum points	213
5. Cł	hange of variables	217
6. Th	he Laplacian in polar coordinates	220
7. A	proof for the Local Inversion Theorem	221
8. Tł	he derivative of a function of a complex variable	225
9. Pr	roblems	230
Bibliography		233

Preface

I start this preface with some ideas of my former Teacher and Master, senior researcher I, corresponding member of the Romanian Academy, Dr. Doc. Nicolae Popescu (Institute of Mathematics of the Romanian Academy).

Question: What is Mathematics?

Answer: It is the art of reasoning, thinking or making judgements. It is difficult to say more, because we are not able to exactly define the notion of a "table", not to say Math! In the greek language "mathema" means "knowledge". Do you think that there is somebody who is able to define this last notion? And so on... Let us do Math, let us apply or teach it and let us stop to search for a definition of it!

Q: Is Math like Music?

A: Since any human activity involves more or less need of reasoning, Mathematics is more connected with our everyday life then all the other arts. Moreover, any description of the natural or social phenomena use mathematical tools.

Q: What kind of Mathematics is useful for an engineer?

A: Firstly, the basic Analysis, because this one is the best tool for strengthening the ability of making correct judgements and of taking appropriate decisions. Formulas and notions of Analysis are at the basis of the particular language used by the engineering topics like Mechanics, Material Sciences, Elasticity, Concrete Sciences, etc. Secondly, Linear Algebra and Geometry develop the ability to work with vectors, with geometrical object, to understand some specific algebraic structures and to use them for applying some numerical methods. Differential Equations, Calculus of Variations and Probability Theory have a direct impact in the scientific presentation of all the engineering applications. Computer Science cannot be taught without the basic knowledge of the above mathematical topics. Mathematics comes from reality and returns to it.

Q: How can we learn Math such that this one not becomes abstract, annoying, difficult, etc.?

Click here to download full PDF material