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Chapter 2

POLYNOMIALS

2.1. Introduction

We shall be considering polynomials with rational, real or complex coefficients. Accordingly, throughout
this chapter, F denotes Q, R or C.

Definition. We denote by F[x] the set of all polynomials of the form

p(x) = pkxk + pk−1x
k−1 + . . . + p1x + p0, where k ∈ N ∪ {0} and p0, . . . , pk ∈ F;

in other words, F[x] denotes the set of all polynomials in variable x and with coefficients in F. Suppose
further that pk 6= 0. Then pk is called the leading coefficient of the polynomial p(x), pkxk is called the
leading term of the polynomial p(x), and k is called the degree of the polynomial p(x). In this case, we
write k = deg p(x). Furthermore, if pk = 1, then the polynomial p(x) is called monic.

Example 2.1.1. The polynomial 3x2 + 2 is in Q[x], R[x] and C[x]. Furthermore, it has degree 2 and
leading coefficient 3.

Example 2.1.2. The polynomial 4x2 + 3x −
√

5 is in R[x] and C[x] but not Q[x]. Furthermore, it has
degree 2 and leading coefficient 4.

Example 2.1.3. The polynomial x3 + (3 + 2i)x− 3 is in C[x] but not Q[x] or R[x]. Furthermore, it has
degree 3 and is monic.

Example 2.1.4. The constant polynomial 5 is in Q[x], R[x] and C[x]. Furthermore, it has degree 0 and
leading coefficient 5.
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Remark. We have defined the degree of any non-zero constant polynomial to be 0. Note, however, that
we have not defined the degree of the constant polynomial 0. The reason for this will become clear from
Proposition 2A.

Definition. Suppose that

p(x) = pkxk + pk−1x
k−1 + . . . + p1x + p0 and q(x) = qmxm + qm−1x

m−1 + . . . + q1x + q0

are two polynomials in F[x]. Then we write

p(x) + q(x) = (pn + qn)xn + (pn−1 + qn−1)x
n−1 + . . . + (p1 + q1)x + (p0 + q0), (1)

where n = max{k, m}. Furthermore, we write

p(x)q(x) = rk+mxk+m + rk+m−1x
k+m−1 + . . . + r1x + r0, (2)

where, for every s = 0, 1, . . . , k + m,

rs =

s
∑

j=0

pjqs−j . (3)

Here, we adopt the convention pj = 0 for every j > k and qj = 0 for every j > m.

Example 2.1.5. Suppose that p(x) = 3x2 + 2 and q(x) = x3 + (3 + 2i)x − 3. Note that k = 2, p0 = 2,
p1 = 0 and p2 = 3. Note also that m = 3, q0 = −3, q1 = 3 + 2i, q2 = 0 and q3 = 1. If we adopt the
convention, then k + m = 5 and p3 = p4 = p5 = q4 = q5 = 0. Now

p(x) + q(x) = (0 + 1)x3 + (3 + 0)x2 + (0 + 3 + 2i)x + (2 − 3) = x3 + 3x2 + (3 + 2i)x − 1.

On the other hand,

r5 = p0q5 + p1q4 + p2q3 + p3q2 + p4q1 + p5q0 = p2q3 = 3,

r4 = p0q4 + p1q3 + p2q2 + p3q1 + p4q0 = p1q3 + p2q2 = 0 + 0 = 0,

r3 = p0q3 + p1q2 + p2q1 + p3q0 = p0q3 + p1q2 + p2q1 = 2 + 0 + 3(3 + 2i) = 11 + 6i,

r2 = p0q2 + p1q1 + p2q0 = 0 + 0 − 9 = −9,

r1 = p0q1 + p1q0 = 2(3 + 2i) + 0 = 6 + 4i,

r0 = p0q0 = −6,

so that

p(x)q(x) = 3x5 + (11 + 6i)x3 − 9x2 + (6 + 4i)x − 6.

Note that our technique for multiplication is really just a more formal version of the usual technique
involving distribution, as

p(x)q(x) = (3x2 + 2)(x3 + (3 + 2i)x − 3)

= (3x2 + 2)x3 + (3x2 + 2)(3 + 2i)x − 3(3x2 + 2)

= (3x5 + 2x3) + (3(3 + 2i)x3 + 2(3 + 2i)x) − (9x2 + 6)

= 3x5 + (11 + 6i)x3 − 9x2 + (6 + 4i)x − 6.

More formally, we have

p(x)q(x) = (p2x
2 + p1x + p0)(q3x

3 + q2x
2 + q1x + q0)

= (p2x
2 + p1x + p0)q3x

3 + (p2x
2 + p1x + p0)q2x

2 + (p2x
2 + p1x + p0)q1x + (p2x

2 + p1x + p0)q0

= (p2q3x
5 + p1q3x

4 + p0q3x
3) + (p2q2x

4 + p1q2x
3 + p0q2x

2) + (p2q1x
3 + p1q1x

2 + p0q1x)

+ (p2q0x
2 + p1q0x + p0q0)

= p2q3x
5 + (p1q3 + p2q2)x

4 + (p0q3 + p1q2 + p2q1)x
3 + (p0q2 + p1q1 + p2q0)x

2 + (p0q1 + p1q0)x + p0q0.
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The following result follows immediately from the definitions. For purely technical reasons, we define
deg 0 = −∞, where 0 represents the constant zero polynomial.

PROPOSITION 2A. Suppose that

p(x) = pkxk + pk−1x
k−1 + . . . + p1x + p0 and q(x) = qmxm + qm−1x

m−1 + . . . + q1x + q0

are two polynomials in F[x], where both pk and qm are non-zero, so that deg p(x) = k and deg q(x) = m.
Then
(a) deg p(x)q(x) = k + m; and
(b) deg(p(x) + q(x)) ≤ max{k, m}.

Proof. (a) Suppose first of all that p(x) and q(x) are both different from the zero polynomial 0. Then
it follows from (2) and (3) that the leading term of the polynomial p(x)q(x) is rk+mxk+m, where

rk+m = p0qk+m + . . . + pk−1qm+1 + pkqm + pk+1qm−1 + . . . + pk+mq0 = pkqm 6= 0.

Hence deg p(x)q(x) = k + m. If p(x) is the zero polynomial, then p(x)q(x) is also the zero polynomial.
Note now that deg p(x)q(x) = −∞ = −∞ + deg q(x) = deg p(x) + deg q(x). A similar argument applies
if q(x) is the zero polynomial.

(b) Recall (1) and that n = max{k, m}. If pn + qn 6= 0, then deg(p(x) + q(x)) = n = max{k,m}. If
pn + qn = 0 and p(x) + q(x) is non-zero, then there is a largest j < n such that pj + qj 6= 0, so that
deg(p(x) + q(x)) = j < n = max{k, m}. Finally, if pn + qn = 0 and p(x) + q(x) is the zero polynomial 0,
then deg(p(x) + q(x)) = −∞ < max{k, m}. ©

2.2. Polynomial Equations

An equation of the type ax + b = 0, where a, b ∈ F and a 6= 0, is called a linear polynomial equation, or
simply a linear equation, and has unique solution

x = − b

a
.

Occasionally a given linear equation may look a little more complicated. However, with the help of some
simple algebra, one can reduce the given equation to the form given above.

An equation of the type

ax2 + bx + c = 0,

where a, b, c ∈ F are constants and a 6= 0, is called a quadratic polynomial equation, or simply a quadratic
equation. To solve such an equation, we observe first of all that

ax2 + bx + c = a

(

x2 +
b

a
x +

c

a

)

= a

(

x2 + 2
b

2a
x +

(

b

2a

)2

+
c

a
− b2

4a2

)

= a

(

(

x +
b

2a

)2

− b2 − 4ac

4a2

)

= 0

precisely when

(

x +
b

2a

)2

=
b2 − 4ac

4a2
. (4)
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Suppose first of all that F = R, so that we are considering quadratic equations with real coefficients.
Then there are three cases:

(1) If b2 − 4ac > 0, then (4) becomes

x +
b

2a
= ±

√
b2 − 4ac

2a
, so that x =

−b ±
√

b2 − 4ac

2a
.

We therefore have two distinct real solutions for the quadratic equation.

(2) If b2 − 4ac = 0, then (4) becomes

(

x +
b

2a

)2

= 0, so that x = − b

2a
.

Indeed, this solution occurs twice, as we shall see later.

(3) If b2 − 4ac < 0, then the right hand side of (4) is negative. It follows that (4) is never satisfied for
any real number x, so that the quadratic equation has no real solution.

Suppose next that F = C, so that we are considering quadratic equations with complex coefficients.
Then there are two cases:

(1) If b2 − 4ac 6= 0, then (4) becomes

x +
b

2a
= ±

√
b2 − 4ac

2a
, so that x =

−b ±
√

b2 − 4ac

2a
.

We therefore have two distinct complex solutions for the quadratic equation.

(2) If b2 − 4ac = 0, then (4) becomes

(

x +
b

2a

)2

= 0, so that x = − b

2a
.

Again, this solution occurs twice, as we shall see later.

For polynomial equations of degree greater than 2, we do not have general formulae for their solutions.
However, we may occasionally be able to find some solutions by inspection. These may help us find other
solutions. However, we need to understand better how the solutions of polynomial equations are related
to factorization of polynomials. We therefore first study the general problem of attempting to divide a
polynomial by another polynomial.

2.3. Division of Polynomials

Let us consider the question of division in Z. It is possible to divide an integer b by a non-zero integer
a to get a main term q and remainder r, where 0 ≤ r < |a|. In other words, we can find q, r ∈ Z such
that b = aq + r and 0 ≤ r < |a|. In fact, q and r are uniquely determined by a and b. Note that what
governs the remainder r is the restriction 0 ≤ r < |a|; in other words, the “size” of r.

If one is to propose a theory of division in F[x], then one needs to find some way to measure the “size”
of polynomials. This role is played by the degree. Let us now see what we can do.
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Example 2.3.1. Let us attempt to divide the polynomial b(x) = x4 +3x3 +2x2−4x+4 by the non-zero
polynomial a(x) = x2 + 2x + 2. Then we can perform long division is a way similar to long division for
integers.

x2+ x− 2

x2+ 2x+ 2 ) x4+ 3x3+ 2x2− 4x+ 4
x4+ 2x3+ 2x2

x3 − 4x+ 4
x3+ 2x2+ 2x

− 2x2− 6x+ 4
− 2x2− 4x− 4

− 2x+ 8

Let us explain this a bit more carefully. We attempt to divide the polynomial x4 + 3x3 + 2x2 − 4x + 4
by the polynomial x2 + 2x + 2. A factor of x2 will lift the term x2 in the “smaller” polynomial to the
term x4 in the “bigger” polynomial, so let us take this first step, and examine the consequences.

x2

x2+ 2x+ 2 ) x4+ 3x3+ 2x2− 4x+ 4
x4+ 2x3+ 2x2

x3 − 4x+ 4

We next attempt to divide the polynomial x3 − 4x + 4 by the polynomial x2 + 2x + 2. A factor of x will
lift the term x2 in the “smaller” polynomial to the term x3 in the “bigger” polynomial, so let us take
this second step, and examine the consequences.

x2+ x

x2+ 2x+ 2 ) x4+ 3x3+ 2x2− 4x+ 4
x4+ 2x3+ 2x2

x3 − 4x+ 4
x3+ 2x2+ 2x

− 2x2− 6x+ 4

We then attempt to divide the polynomial −2x2 − 6x + 4 by the polynomial x2 + 2x + 2. A factor of
−2 will reconcile the x2 terms, so let us take this third step, and complete our task. If we now write
q(x) = x2 + x − 2 and r(x) = −2x + 8, then b(x) = a(x)q(x) + r(x). Note that deg r(x) < deg a(x). We
can therefore think of q(x) as the main term and r(x) as the remainder. If we think of the degree as a
measure of size, then the remainder r(x) is clearly “smaller” than a(x).

In general, we have the following important result.

PROPOSITION 2B. Suppose that a(x), b(x) ∈ F[x], and that a(x) 6= 0. Then there exist unique
polynomials q(x), r(x) ∈ F[x] such that
(a) b(x) = a(x)q(x) + r(x); and
(b) either r(x) = 0 or deg r(x) < deg a(x).

Proof. Consider all polynomials of the form b(x) − a(x)Q(x), where Q(x) ∈ F[x]. If there exists
q(x) ∈ F[x] such that b(x)− a(x)q(x) = 0, our proof is complete. Suppose now that b(x)− a(x)Q(x) 6= 0
for any Q(x) ∈ F[x]. Then among all polynomials of the form b(x) − a(x)Q(x), where Q(x) ∈ F[x],
there must be one with smallest degree. More precisely, m = min{deg(b(x) − a(x)Q(x)) : Q(x) ∈ F[x]}
exists. Let q(x) ∈ F[x] satisfy deg(b(x) − a(x)q(x)) = m, and let r(x) = b(x) − a(x)q(x). Then
deg r(x) < deg a(x), for otherwise, writing a(x) = anxn + . . .+a1x+a0 and r(x) = rmxm + . . .+r1x+r0,
where m ≥ n, we have

r(x) − (rma−1
n xm−n)a(x) = b(x) − a(x)

(

q(x) + rma−1
n xm−n

)

∈ F[x].
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