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Abstract. One of the most classical problems of mathematics is to solve sys-

tems of polynomial equations in several unknowns. Today, polynomial models

are ubiquitous and widely applied across the sciences. They arise in robot-

ics, coding theory, optimization, mathematical biology, computer vision, game

theory, statistics, machine learning, control theory, and numerous other areas.

The set of solutions to a system of polynomial equations is an algebraic variety,

the basic object of algebraic geometry. The algorithmic study of algebraic vari-

eties is the central theme of computational algebraic geometry. Exciting recent

developments in symbolic algebra and numerical software for geometric calcu-

lations have revolutionized the field, making formerly inaccessible problems

tractable, and providing fertile ground for experimentation and conjecture.

The first half of this book furnishes an introduction and represents a

snapshot of the state of the art regarding systems of polynomial equations.

Afficionados of the well-known text books by Cox, Little, and O’Shea will find

familiar themes in the first five chapters: polynomials in one variable, Gröbner

bases of zero-dimensional ideals, Newton polytopes and Bernstein’s Theorem,

multidimensional resultants, and primary decomposition.

The second half of this book explores polynomial equations from a variety

of novel and perhaps unexpected angles. Interdisciplinary connections are in-

troduced, highlights of current research are discussed, and the author’s hopes

for future algorithms are outlined. The topics in these chapters include com-

putation of Nash equilibria in game theory, semidefinite programming and the

real Nullstellensatz, the algebraic geometry of statistical models, the piecewise-

linear geometry of valuations and amoebas, and the Ehrenpreis-Palamodov

theorem on linear partial differential equations with constant coefficients.

Throughout the text, there are many hands-on examples and exercises,

including short but complete sessions in the software systems maple, matlab,

Macaulay 2, Singular, PHC, and SOStools. These examples will be particularly

useful for readers with zero background in algebraic geometry or commutative

algebra. Within minutes, anyone can learn how to type in polynomial equa-

tions and actually see some meaningful results on the computer screen.
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Preface

This book grew out of the notes for ten lectures given by the author at the
CBMS Conference at Texas A & M University, College Station, during the week of
May 20-24, 2002. Paulo Lima Filho, J. Maurice Rojas and Hal Schenck did a fantas-
tic job of organizing this conference and taking care of more than 80 participants,
many of them graduate students working in a wide range of mathematical fields.
We were fortunate to be able to listen to the excellent invited lectures delivered by
the following twelve leading experts: Saugata Basu, Eduardo Cattani, Karin Gater-
mann, Craig Huneke, Tien-Yien Li, Gregorio Malajovich, Pablo Parrilo∗, Maurice
Rojas, Frank Sottile, Mike Stillman∗, Thorsten Theobald, and Jan Verschelde∗.

Systems of polynomial equations are for everyone: from graduate students
in computer science, engineering, or economics to experts in algebraic geometry.
This book aims to provide a bridge between mathematical levels and to expose as
many facets of the subject as possible. It covers a wide spectrum of mathematical
techniques and algorithms, both symbolic and numerical. There are two chapters
on applications. The one about statistics is motivated by the author’s current
research interests, and the one about economics (Nash equilibria) recognizes Dave
Bayer’s role in the making of the movie A Beautiful Mind. (Many thanks, Dave,
for introducing me to the stars at their kick-off party in NYC on March 16, 2001).

At the end of each chapter there are about ten exercises. These exercises
vary greatly in their difficulty. Some are straightforward applications of material
presented in the text while other “exercises” are quite hard and ought to be renamed
“suggested research directions”. The reader may decide for herself which is which.

We had an inspiring software session at the CBMS conference, and the joy of
computing is reflected in this book as well. Sprinkled throughout the text, the
reader finds short computer sessions involving polynomial equations. These involve
the commercial packages maple and matlab as well as the freely available packages
Singular, Macaulay 2, PHC, and SOStools. Developers of the last three programs
spoke at the CBMS conference. Their names are marked with a star above.

There are many fine computer programs for solving polynomial systems other
than the ones listed above. Sadly, I did not have time to discuss them all. One
such program is CoCoA which is comparable to Singular and Macaulay 2. The
text book by Kreuzer and Robbiano [KR00] does a wonderful job introducing the
basics of Computational Commutative Algebra together with examples in CoCoA.

Software is necessarily ephemeral. While the mathematics of solving polynomial
systems continues to live for centuries, the computer code presented in this book
will become obsolete much sooner. I tested it all in May 2002, and it worked well at
that time, even on our departmental computer system at UC Berkeley. And if you
would like to find out more, each of these programs has excellent documentation.
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