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1 Introduction

We begin by discussing the motivation for real analysis, and especially for
the reconsideration of the notion of integral and the invention of Lebesgue
integration, which goes beyond the Riemannian integral familiar from clas-
sical calculus.

1. Usefulness of analysis. As one of the oldest branches of mathematics,
and one that includes calculus, analysis is hardly in need of justification.
But just in case, we remark that its uses include:

1. The description of physical systems, such as planetary motion, by
dynamical systems (ordinary differential equations);

2. The theory of partial differential equations, such as those describing
heat flow or quantum particles;

3. Harmonic analysis on Lie groups, of which R is a simple example;

4. Representation theory;

1



5. The description of optimal structures, from minimal surfaces to eco-
nomic equilibria;

6. The foundations of probability theory;

7. Automorphic forms and analytic number theory; and

8. Dynamics and ergodic theory.

2. Completeness. We now motivate the need for a sophisticated theory
of measure and integration, called the Lebesgue theory, which will form the
first topic in this course.

In analysis it is necessary to take limits; thus one is naturally led to
the construction of the real numbers, a system of numbers containing the
rationals and closed under limits. When one considers functions it is again
natural to work with spaces that are closed under suitable limits. For exam-
ple, consider the space of continuous functions C[0, 1]. We might measure
the size of a function here by

‖f‖1 =

∫
1

0

|f(x)| dx.

(There is no problem defining the integral, say using Riemann sums).
But we quickly see that there are Cauchy sequences of continuous func-

tions whose limit, in this norm, are discontinuous. So we should extend
C[0, 1] to a space that is closed under limits. It is not at first even evident
that the limiting objects should be functions. And if we try to include all

functions, we are faced with the difficult problem of integrating a general
function.

The modern solution to this natural issue is to introduce the idea of
measurable functions, i.e. a space of functions that is closed under limits and
tame enough to integrate. The Riemann integral turns out to be inadequate
for these purposes, so a new notion of integration must be invented. In fact
we must first examine carefully the idea of the mass or measure of a subset
A ⊂ R, which can be though of as the integral of its indicator function
χA(x) = 1 if x ∈ A and = 0 if x 6∈ A.

3. Fourier series. More classical motivation for the Lebesgue integral
come from Fourier series.

Suppose f : [0, π] → R is a reasonable function. We define the Fourier
coefficients of f by

an =
2

π

∫
π

0

f(x) sin(nx) dx.
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Here the factor of 2/π is chosen so that

2

π

∫
π

0

sin(nx) sin(mx) dx = δnm.

We observe that if

f(x) =
∞∑
1

bn sin(nx),

then at least formally an = bn (this is true, for example, for a finite sum).
This representation of f(x) as a superposition of sines is very useful for

applications. For example, f(x) can be thought of as a sound wave, where
an measures the strength of the frequency n.

Now what coefficients an can occur? The orthogonality relation implies
that

2

π

∫
π

0

|f(x)|2 dx =
∞∑
−∞

|an|
2.

This makes it natural to ask if, conversely, for any an such that
∑

|an|
2 < ∞,

there exists a function f with these Fourier coefficients. The natural function
to try is f(x) =

∑
an sin(nx).

But why should this sum even exist? The functions sin(nx) are only
bounded by one, and

∑
|an|

2 < ∞ is much weaker than
∑

|an| < ∞.
One of the original motivations for the theory of Lebesgue measure and

integration was to refine the notion of function so that this sum really
does exist. The resulting function f(x) however need to be Riemann inte-
grable! To get a reasonable theory that includes such Fourier series, Cantor,
Dedekind, Fourier, Lebesgue, etc. were led inexorably to a re-examination
of the foundations of real analysis and of mathematics itself. The theory
that emerged will be the subject of this course.

Here are a few additional points about this example.
First, we could try to define the required space of functions — called

L2[0, π] — to simply be the metric completion of, say C[0, π] with respect
to d(f, g) =

∫
|f − g|2. The reals are defined from the rationals in a similar

fashion. But the question would still remain, can the limiting objects be
thought of as functions?

Second, the set of point E ⊂ R where
∑

an sin(nx) actually converges is
liable to be a very complicated set — not closed or open, or even a countable
union or intersection of sets of this form. Thus to even begin, we must have
a good understanding of subsets of R.

Finally, even if the limiting function f(x) exists, it will generally not be
Riemann integrable. Thus we must broaden our theory of integration to
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deal with such functions. It turns out this is related to the second point —
we must again find a good notion for the length or measure m(E) of a fairly
general subset E ⊂ R, since m(E) =

∫
χE .

2 Set Theory and the Real Numbers

The foundations of real analysis are given by set theory, and the notion of
cardinality in set theory, as well as the axiom of choice, occur frequently in
analysis. Thus we begin with a rapid review of this theory. For more details
see, e.g. [Hal]. We then discuss the real numbers from both the axiomatic
and constructive point of view. Finally we discuss open sets and Borel sets.

In some sense, real analysis is a pearl formed around the grain of sand
provided by paradoxical sets. These paradoxical sets include sets that have
no reasonable measure, which we will construct using the axiom of choice.

The axioms of set theory. Here is a brief account of the axioms.

• Axiom I. (Extension) A set is determined by its elements. That is, if
x ∈ A =⇒ x ∈ B and vice-versa, then A = B.

• Axiom II. (Specification) If A is a set then {x ∈ A : P (x)} is also a
set.

• Axiom III. (Pairs) If A and B are sets then so is {A,B}. From this
axiom and ∅ = 0, we can now form {0, 0} = {0}, which we call 1; and
we can form {0, 1}, which we call 2; but we cannot yet form {0, 1, 2}.

• Axiom IV. (Unions) If A is a set, then
⋃

A = {x : ∃B,B ∈ A & x ∈
B} is also a set. From this axiom and that of pairs we can form⋃
{A,B} = A ∪ B. Thus we can define x+ = x + 1 = x ∪ {x}, and

form, for example, 7 = {0, 1, 2, 3, 4, 5, 6}.

• Axiom V. (Powers) If A is a set, then P(A) = {B : B ⊂ A} is also a
set.

• Axiom VI. (Infinity) There exists a set A such that 0 ∈ A and x+1 ∈ A
whenever x ∈ A. The smallest such set is unique, and we call it
N = {0, 1, 2, 3, . . .}.

• Axiom VII (The Axiom of Choice): For any set A there is a function
c : P(A)− {∅} → A, such that c(B) ∈ B for all B ⊂ A.
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Cardinality. In set theory, the natural numbers N are defined inductively
by 0 = ∅ and n = {0, 1, . . . , n − 1}. Thus n, as a set, consists of exactly n
elements.

We write |A| = |B| to mean there is a bijection between the sets A and
B; in other words, these sets have the same cardinality. A set A is finite if
|A| = n for some n ∈ N; it is countable if A is finite or |A| = |N|; otherwise,
it is uncountable.

A countable set is simply one whose elements can be written down in
a (possibly finite) list, (x1, x2, . . .). When |A| = |N| we say A is countably

infinite.

Inequalities. It is natural to write |A| ≤ |B| if there is an injective map
A →֒ B. By the Schröder–Bernstein theorem (elementary but nontrivial),
we have

|A| ≤ |B| and |B| ≤ |A| =⇒ |A| = |B|.

The power set. We let AB denote the set of all maps f : B → A. The
power set P(A) ∼= 2A is the set of all subsets of A. A profound observation,
due to Cantor, is that

|A| < |P(A)|

for any set A. The proof is easy: if f : A → P(A) were a bijection, we could
then form the set

B = {x ∈ A : x 6∈ f(x)},

but then B cannot be in the image of f , for if B = f(x), then x ∈ B iff
x 6∈ B.

Russel’s paradox. We remark that Cantor’s argument is closely related
to Russell’s paradox: if E = {X : X 6∈ X}, then is E ∈ E? Note that the
axioms of set theory do not allow us to form the set E!

Countable sets. It is not hard to show that N × N is countable, and
consequently:

A countable union of countable sets is countable.

Thus Z,Q and the set of algebraic numbers in C are all countable sets.

Remark: The Axiom of Choice. Recall this axiom states that for any
set A ,there is a map c : P(A) − {∅} → A such that c(A) ∈ A. This axiom
is often useful and indeed necessary in proving very general theorems; for
example, if there is a surjective map f : A → B, then there is an injective
map g : B → A (and thus |B| ≤ |A|). (Proof: set g(b) = c(f−1(b)).)

Another typical application of the axiom of choice is to show:
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