Notes on Calculus II Integral Calculus

Miguel A. Lerma

November 22, 2002

Contents

Introduction	5
Chapter 1. Integrals	6
1.1. Areas and Distances. The Definite Integral	6
1.2. The Evaluation Theorem	11
1.3. The Fundamental Theorem of Calculus	14
1.4. The Substitution Rule	16
1.5. Integration by Parts	21
1.6. Trigonometric Integrals and Trigonometric Substitutions	26
1.7. Partial Fractions	32
1.8. Integration using Tables and CAS	39
1.9. Numerical Integration	41
1.10. Improper Integrals	46
Chapter 2. Applications of Integration	50
2.1. More about Areas	50
2.2. Volumes	52
2.3. Arc Length, Parametric Curves	57
2.4. Average Value of a Function (Mean Value Theorem)	61
2.5. Applications to Physics and Engineering	63
2.6. Probability	69
Chapter 3. Differential Equations	74
3.1. Differential Equations and Separable Equations	74
3.2. Directional Fields and Euler's Method	78
3.3. Exponential Growth and Decay	80
Chapter 4. Infinite Sequences and Series	83
4.1. Sequences	83
4.2. Series	88
4.3. The Integral and Comparison Tests	92
4.4. Other Convergence Tests	96
4.5. Power Series	98
4.6. Representation of Functions as Power Series	100
4.7. Taylor and MacLaurin Series	103

CONTENTS	4
4.8. Applications of Taylor Polynomials	109
Appendix A. Hyperbolic Functions A.1. Hyperbolic Functions	$\begin{array}{c} 113\\113\end{array}$
Appendix B. Various Formulas B.1. Summation Formulas	118 118
Appendix C. Table of Integrals	119

Introduction

These notes are intended to be a summary of the main ideas in course MATH 214-2: *Integral Calculus*. I may keep working on this document as the course goes on, so these notes will not be completely finished until the end of the quarter.

The textbook for this course is Stewart: *Calculus, Concepts and Contexts* (2th ed.), Brooks/Cole. With few exceptions I will follow the notation in the book.

If you find any typos or errors, or you have any suggestions, please, do not hesitate to let me know. You may email me, or use the web form for feedback on the web pages for the course:

http://www.math.northwestern.edu/~mlerma/courses/math214-2-02f/

Miguel A. Lerma mlerma@math.northwestern.edu Northwestern University Fall 2002

Click here to download full PDF material