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And from my pillow, looking forth by light

Of moon or favouring stars, I could behold

The antechapel where the statue stood

Of Newton with his prism and silent face,

The marble index of a mind for ever

Voyaging through strange seas of Thought, alone.

. . . William Wordsworth, The Prelude.
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PREFACE

There are plenty of calculus books available, many free or at least cheap, that discuss

integrals. Why add another one?

Our purpose is to present integration theory at an honors calculus level and in an

easier manner by defining the definite integral in a very traditional way, but a way that

avoids the equally traditional Riemann sums definition.

Riemann sums enter the picture, to be sure, but the integral is defined in the way that

Newton himself would surely endorse. Thus the fundamental theorem of the calculus

starts off as the definition and the relation with Riemann sums becomes a theorem (not

the definition of the definite integral as has, most unfortunately, been the case for many

years).

As usual in mathematical presentations we all end up in the same place. It is just

that we have taken a different route to get there. It is only a pedagogical issue of which

route offers the clearest perspective. The common route of starting with the definition of

the Riemann integral, providing the then necessary detour into improper integrals, and

ultimately heading towards the Lebesgue integral is arguably not the best path although

it has at least the merit of historical fidelity.
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Note to the instructor

Since it is possible that some brave mathematicians will undertake to present integra-

tion theory to undergraduates students using the presentation in this text, it would be

appropriate for us to address some comments to them.

What should I teach the weak calculus students?

Let me dispense with this question first. Don’t teach them this material, which is aimed

much more at the level of an honor’s calculus course. I also wouldn’t teach them the

Riemann integral. I think a reasonable outline for these students would be this:

1. An informal account of the indefinite integral formula∫
F ′(x)dx = F(x)+C

just as an antiderivative notation with a justification provided by the mean-value

theorem.

2. An account of what it means for a function to be continuous on an interval [a,b].

3. The definition ∫ b

a
F ′(x)dx = F(b)−F(a)

for continuous functions F : [a,b] → R that are differentiable at all1 points in

(a,b). The mean-value theorem again justifies the definition. You won’t need

improper integrals, e.g.,∫ 1
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4. Any properties of integrals that are direct translations of derivative properties.

5. The Riemann sums identity∫ b

a
f (x)dx =

n

∑
i=1

f (ξ∗i )(xi − xi−1)

where the points ξ∗i that make this precise are selected by the mean-value theo-

rem.

1. . . or all but finitely many points
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