A Course in Riemannian Geometry

David R. Wilkins

Copyright © David R. Wilkins 2005

Contents

1	Smooth Manifolds	3		
	1.1 Smooth Manifolds	3		
	1.2 Submanifolds	4		
	1.3 Smooth Mappings between Smooth Manifolds	5		
	1.4 Bump Functions and Partitions of Unity	5		
2	Tangent Spaces	7		
	2.1 Derivatives of Smooth Maps	12		
	2.2 Vector Fields on Smooth Manifolds	12		
	2.3 The Lie Bracket	14		
3	Affine Connections on Smooth Manifolds 16			
	3.1 Vector Fields along Smooth Maps	23		
	3.2 Covariant Differentiation of Vector Fields along Curves	24		
	3.3 Vector Fields along Parameterized Surfaces	25		
4	Riemannian Manifolds	28		
	4.1 The Levi-Civita Connection	30		
5	Geometry of Surfaces in \mathbb{R}^3	36		
6	Geodesics in Riemannian Manifolds	46		
	6.1 Length-Minimizing Curves in Riemannian Manifolds	49		
	6.2 Geodesic Spheres and Gauss' Lemma	52		
7	Complete Riemannian Manifolds	55		
	7.1 Local Isometries and Covering Maps	58		

8	Jacobi Fields		
	8.1	Flat Riemannian manifolds	62
	8.2	The Cartan-Hadamard Theorem	64
	8.3	The Second Variation of Energy	65

1 Smooth Manifolds

1.1 Smooth Manifolds

A topological space M is said a *topological manifold* of dimension n if it is metrizable (i.e., there exists a distance function d on M which generates the topology of M) and every point of M has an open neighbourhood homeomorphic to an open set in n-dimensional Euclidean space \mathbb{R}^n .

Let M be a topological manifold. A continuous coordinate system defined over an open set U in M is defined to be an n-tuple (x^1, x^2, \ldots, x^n) of continuous real-valued functions on U such that the map $\varphi: U \to \mathbb{R}^n$ defined by

$$\varphi(u) = \left(x^1(u), x^2(u), \dots, x^n(u)\right)$$

maps U homeomorphically onto some open set in \mathbb{R}^n . The domain U of the coordinate system (x^1, x^2, \ldots, x^n) is referred to as a *coordinate patch* on M.

Two continuous coordinate systems (x^1, x^2, \ldots, x^n) and (y^1, y^2, \ldots, y^n) defined over coordinate patches U and V are said to be *smoothly compatible* if the coordinates (x^1, x^2, \ldots, x^n) depend smoothly on (y^1, y^2, \ldots, y^n) and vica versa on the overlap $U \cap V$ of the coordinate patches. Note in particular that two coordinate systems are smoothly compatible if the corresponding coordinate patches are disjoint.

A smooth atlas on M is a collection of continuous coordinate systems on M such that the following two conditions hold:—

- (i) every point of M belongs to the coordinate patch of at least one of these coordinate systems,
- (ii) the coordinate systems in the atlas are smoothly compatible with one another.

Let \mathcal{A} be a smooth atlas on a topological manifold M of dimension n. Let (u^1, u^2, \ldots, u^n) and (v^1, v^2, \ldots, v^n) be continuous coordinate systems, defined over coordinate patches U and V respectively. If the coordinate systems (u^i) and (v^i) are smoothly compatible with all the coordinate systems in the atlas \mathcal{A} then they are smoothly compatible with each other. Indeed suppose that $U \cap V \neq 0$, and let m be a point of $U \cap V$. Then (by condition (i) above) there exists a coordinate system (x^i) belonging to the atlas \mathcal{A} whose coordinate patch includes that point m. But the coordinates (v^i) depend smoothly on the coordinates (x^i) , and the coordinates (x^i) depend smoothly on the coordinates (u^i) around m (since the coordinate systems (u^i) and (v^i) are smoothly compatible with all coordinate systems in the atlas \mathcal{A}). It follows from the Chain Rule that the coordinates (v^i) depend

smoothly on the coordinates (u^i) around m, and similarly the coordinates (u^i) depend smoothly on the coordinates (v^i) . Therefore the continuous coordinate systems (u^i) and (v^i) are smoothly compatible with each other.

We deduce that, given a smooth atlas \mathcal{A} on a topological manifold M, we can enlarge \mathcal{A} by adding to to \mathcal{A} all continuous coordinate systems on Mthat are smoothly compatible with each of the coordinate systems of \mathcal{A} . In this way we obtain a smooth atlas on M which is *maximal* in the sense that any coordinate system smoothly compatible with all the coordinate systems in the atlas already belongs to the atlas.

Definition A smooth manifold (M, \mathcal{A}) consists of a topological manifold M together with a maximal smooth atlas \mathcal{A} of coordinate systems on M. A smooth coordinate system (x^1, x^2, \ldots, x^n) on M is a coordinate system belonging to the maximal smooth atlas \mathcal{A} .

Note that \mathbb{R}^n is a smooth manifold of dimension n. The maximal smooth atlas on \mathbb{R}^n consists of all (curvilinear) coordinate systems that are smoothly compatible with the standard Cartesian coordinate system on \mathbb{R}^n .

1.2 Submanifolds

Let M be a subset of a k-dimensional smooth manifold N. We say that M is a smooth *embedded submanifold* of N of dimension n if, given any point m of M, there exists a smooth coordinate system (u^1, u^2, \ldots, u^k) defined over some open set U in N, where $m \in U$, with the property that

$$M \cap U = \{ p \in U : u^i(p) = 0 \text{ for } i = n+1, \dots, k \}.$$

Given such a coordinate system (u^1, u^2, \ldots, u^k) , the restrictions of the coordinate functions u^1, u^2, \ldots, u^n to $U \cap M$ provide a coordinate system on M around the point m. The collection of all such coordinate systems constitutes a smooth atlas on M. Thus any smooth embedded submanifold M of a smooth manifold N is itself a smooth manifold (with respect to the unique maximal smooth atlas containing the smooth atlas on M just described).

Example Consider the unit sphere S^n in \mathbb{R}^{n+1} consisting of those vectors \mathbf{x} in \mathbb{R}^{n+1} satisfying $|\mathbf{x}| = 1$. Given any integer *i* between 1 and n + 1, let

$$u^{j}(\mathbf{x}) = \begin{cases} x^{j} & \text{if } j < i; \\ x^{j+1} & \text{if } i \le j \le n; \\ (x^{1})^{2} + (x^{2})^{2} + \dots + (x^{n+1})^{2} - 1 & \text{if } j = n+1. \end{cases}$$

Then $(u^1, u^2, \ldots, u^{n+1})$ is a smooth coordinate system on U_i^+ and on U_i^- , where

$$U_i^+ = \{ \mathbf{x} \in \mathbb{R}^{n+1} : x^i > 0 \}, \qquad U_i^- = \{ \mathbf{x} \in \mathbb{R}^{n+1} : x^i < 0 \},$$

and

$$S^n \cap U_i^{\pm} = \{ \mathbf{x} \in U_i^{\pm} : u^{n+1}(\mathbf{x}) = 0 \}.$$

Moreover S^n is covered by $U_1^{\pm}, U_2^{\pm}, \ldots, U_{n+1}^{\pm}$. This shows that S^n is a smooth embedded submanifold of \mathbb{R}^{n+1} .

1.3 Smooth Mappings between Smooth Manifolds

Let M and N be smooth manifolds of dimension n and k respectively. A mapping $\varphi: M \to N$ from M to N is said to be *smooth* around a point m of M if, given smooth coordinate systems (x^1, x^2, \ldots, x^n) and (y^1, y^2, \ldots, y^k) around m and $\varphi(m)$, the coordinates $(y^1(\varphi(u)), y^2(\varphi(u)), \ldots, y^k(\varphi(u)))$ of $\varphi(u)$ depend smoothly on the coordinates $(x^1(u), x^2(u), \ldots, x^n(u))$ of u for all points u belonging to some sufficiently small neighbourhood of m. (Note that if there exist smooth coordinate systems (x^1, x^2, \ldots, x^n) and (y^1, y^2, \ldots, y^k) around m and $\varphi(m)$ for which this condition is satisfied, then the condition is satisfied for all such smooth coordinate systems around m and $\varphi(m)$; this follows easily from the fact that a composition of smooth functions is smooth.) The mapping $\varphi: M \to N$ is said to be *smooth* if it is smooth around every point of M.

1.4 Bump Functions and Partitions of Unity

Let $f: X \to \mathbb{R}$ be a real-valued function defined defined over a topological space X. The *support* supp f of f is defined to be the closure of the set $\{x \in X : f(x) \neq 0\}$. Thus supp f is the smallest closed set in X with the property that the function f vanishes on the complement of that set.

Lemma 1.1 Let U be an open set in a smooth manifold M of dimension n, and let m be a point of M. Then there exists an open subset V of U containing the point m and a smooth non-negative function $f: M \to \mathbb{R}$ such that $\operatorname{supp} f \subset U$ and f(v) = 1 for all $v \in V$.

Proof We may assume, without loss of generality, that U is contained in the coordinate patch of some smooth coordinate system (x^1, x^2, \ldots, x^n) and that $x^i(m) = 0$ for $i = 1, 2, \ldots, n$. Thus it suffices to show that, given any r > 0,

Click here to download full PDF material