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CHAPTER 1

Curves

1. Examples, Arclength Parametrization

We say a vector function fW .a; b/ ! R
3 is Ck (k D 0; 1; 2; : : :) if f and its first k derivatives, f0, f00, . . . ,

f.k/, exist and are all continuous. We say f is smooth if f is Ck for every positive integer k. A parametrized

curve is a C3 (or smooth) map ˛W I ! R
3 for some interval I D .a; b/ or Œa; b� in R (possibly infinite). We

say ˛ is regular if ˛
0.t/ ¤ 0 for all t 2 I .

We can imagine a particle moving along the path ˛, with its position at time t given by ˛.t/. As we

learned in vector calculus,

˛
0.t/ D

d˛

dt
D lim

h!0

˛.t C h/ � ˛.t/

h

is the velocity of the particle at time t . The velocity vector ˛
0.t/ is tangent to the curve at ˛.t/ and its length,

k˛
0.t/k, is the speed of the particle.

Example 1. We begin with some standard examples.

(a) Familiar from linear algebra and vector calculus is a parametrized line: Given points P and Q in

R
3, we let v D

��!
PQ D Q � P and set ˛.t/ D P C tv, t 2 R. Note that ˛.0/ D P , ˛.1/ D Q,

and for 0 � t � 1, ˛.t/ is on the line segment PQ. We ask the reader to check in Exercise 8 that of

all paths from P to Q, the “straight line path” ˛ gives the shortest. This is typical of problems we

shall consider in the future.

(b) Essentially by the very definition of the trigonometric functions cos and sin, we obtain a very natural

parametrization of a circle of radius a, as pictured in Figure 1.1(a):

˛.t/ D a
�

cos t; sin t
�

D
�

a cos t; a sin t
�

; 0 � t � 2�:

(a cos t, a sin t)

(a cos t, b sin t)

t

a a

b

(a) (b)

FIGURE 1.1
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(c) Now, if a; b > 0 and we apply the linear map

T WR2 ! R
2; T .x; y/ D .ax; by/;

we see that the unit circle x2Cy2 D 1 maps to the ellipse x2=a2Cy2=b2 D 1. Since T .cos t; sin t/ D

.a cos t; b sin t/, the latter gives a natural parametrization of the ellipse, as shown in Figure 1.1(b).

(d) Consider the two cubic curves in R
2 illustrated in Figure 1.2. On the left is the cuspidal cubic

y=tx

y2=x3

y2=x3+x2

(a) (b)

FIGURE 1.2

y2 D x3, and on the right is the nodal cubic y2 D x3Cx2. These can be parametrized, respectively,

by the functions

˛.t/ D .t2; t3/ and ˛.t/ D .t2 � 1; t.t2 � 1//:

(In the latter case, as the figure suggests, we see that the line y D tx intersects the curve when

.tx/2 D x2.x C 1/, so x D 0 or x D t2 � 1.)

z=x3

y=x2

z2=y3

FIGURE 1.3
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(e) Now consider the twisted cubic in R
3, illustrated in Figure 1.3, given by

˛.t/ D .t; t2; t3/; t 2 R:

Its projections in the xy-, xz-, and yz-coordinate planes are, respectively, y D x2, z D x3, and

z2 D y3 (the cuspidal cubic).

(f) Our next example is a classic called the cycloid: It is the trajectory of a dot on a rolling wheel

(circle). Consider the illustration in Figure 1.4. Assuming the wheel rolls without slipping, the

t

O

P
a

FIGURE 1.4

distance it travels along the ground is equal to the length of the circular arc subtended by the angle

through which it has turned. That is, if the radius of the circle is a and it has turned through angle

t , then the point of contact with the x-axis, Q, is at units to the right. The vector from the origin to

t a cos t

a sin t

a

P

C

O

P

Q

C

FIGURE 1.5

the point P can be expressed as the sum of the three vectors
��!
OQ,

��!
QC , and

��!
CP (see Figure 1.5):

��!
OP D

��!
OQ C

��!
QC C

��!
CP

D .at; 0/ C .0; a/ C .�a sin t; �a cos t/;

and hence the function

˛.t/ D .at � a sin t; a � a cos t/ D a.t � sin t; 1 � cos t/; t 2 R

gives a parametrization of the cycloid.

(g) A (circular) helix is the screw-like path of a bug as it walks uphill on a right circular cylinder at a

constant slope or pitch. If the cylinder has radius a and the slope is b=a, we can imagine drawing a

line of that slope on a piece of paper 2�a units long, and then rolling the paper up into a cylinder.

The line gives one revolution of the helix, as we can see in Figure 1.6. If we take the axis of the

cylinder to be vertical, the projection of the helix in the horizontal plane is a circle of radius a, and

so we obtain the parametrization ˛.t/ D .a cos t; a sin t; bt/.
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