Notes on Differential Equations

Robert E. Terrell

Preface

These *Notes on Differential Equations* are an introduction and invitation. The focus is on

- 1. important models
- 2. calculus (review?) in applied contexts

I may point out that the title is not *Solving* Differential Equations; we derive them, discuss them, review calculus background for them, apply them, sketch and compute them, and also solve them and interpret the solutions. This breadth is new to many students.

The notes, available for many years on my web page, have evolved from lectures I have given while teaching the Engineering Mathematics courses at Cornell University. They could be used for an introductory unified course on ordinary and partial differential equations. There is minimal manipulation and a lot of emphasis on the teaching of concepts by example.

For background on calculus see

• Lax, P., and Terrell, M., Calculus With Applications, Springer, 2014.

The focus on key models here was influenced by the Lax Terrell book. In a few places we assume familiarity with the divergence theorem. For further information see:

- Churchill, Ruel V., Fourier Series and Boundary Value Problems, McGraw Hill, 1941
- Hubbard, John H., and West, Beverly H., *Differential Equations, a Dynamical Systems Approach*, *Parts 1 and 2*, Springer, 1995 and 1996.
- and the software discussed in Lecture 5.

Some of the exercises have the format "What's rong with this?". These are either questions asked by students or errors taken from test papers of students in this class, so it could be quite beneficial to study them.

Robert E. Terrell

version 5: 2014

version 1: 1997

Contents

1	The Banker's Equation	1
	1.1 Slope Fields	2
2	A Gallery of Differential Equations	5
3	The Transport Equation	7
	3.1 A Conservation Law	7
	3.2 Traveling Waves	8
4	The Logistic Population Model	11
5	Existence and Uniqueness and Software	14
6	Newton's Law of Cooling	17
	6.1 Investments	20
7	Exact equations for Air and Steam	21
8	Euler's Numerical Method	24
9	Spring-mass oscillations	28
	9.1 Conservation laws and uniqueness	31
10	Applications of Complex Numbers	33
	10.1 Exponential and characteristic equation	33
	10.2 The Fundamental Theorem of Algebra	38
	10.3 A forced oscillator	39
11	Three masses oscillate	42
12	Boundary Value Problems	47

13	The Conduction of Heat	50
	13.1 Walk the line	53
14	Initial Boundary Value Problems for the Heat Equation	57
	14.1 Insulation	58
	14.2 Product Solutions	59
	14.3 Superposition	61
15	The Wave Equation	65
16	Application of Power Series: a Drum model	69
	16.1 A new Function for the Drum model, J_0	73
	16.2 But what does the drum Sound like?	75
17	The Euler equation for Fluid Flow, and Acoustic Waves	77
	17.1 Sound	81
18	The Laplace Equation	82
	18.1 Laplace leads to Fourier	85
	18.2 Fourier's Dilemma	87
	18.3 Fourier answered by Orthogonality	89
19	Application to the weather?	92

1 The Banker's Equation

TODAY: An example involving your bank account, and nice pictures called slope fields (or direction fields). How to read a differential equation.

Welcome to the world of differential equations! They describe many processes in the world around you, but of course we'll have to convince you of that. Today we are going to give an example, and find out what it means to read a differential equation.

A differential equation is an equation which contains a derivative of an unknown function. It tells something about a rate of change, from which we hope to deduce facts about the function. Here is a differential equation.

$$\frac{dy}{dt} = .01y$$

It might represent your bank account, where the balance is y(t) at a time t years after you open the account, and the account is earning 1% interest. Regardless of the specific interpretation, let's see what the equation says. Since we see the term dy/dt we can tell that y is a function of t, and that the rate of change is a multiple, namely .01, of the value of y itself. We definitely should always write y(t) instead of just y, and we will sometimes, but it is traditional to be sloppy.

For example, if y happens to be 2000 at a particular time t, the rate of change of y is then .01(2000) = 20, and the units of this rate are dollars/year. From calculus we know that y is increasing whenever y' is positive, thus whenever y is positive. I hope your bank balance is positive!

PRACTICE: What do you estimate the balance will be, roughly, a year from now, if it is 2000 and is growing at 20 dollars/year?

This is not supposed to be a hard question. By the way, when I ask a question, don't cheat yourself by ignoring it. Think about it, and future things will be easier.

Later when y is, say, 5875.33, its rate of change will be .01(5875.33) = 58.7533 which is much faster. We'll sometimes refer to y' = .01y as the banker's equation.

Do you begin to see how you can get useful information from a differential equation fairly easily, by just reading it carefully? One of the most important skills to learn about differential equations is how to read them. For example in the equation

$$y' = .01y - 10$$

Click here to download full PDF material