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Abstract

These are notes for an undergraduate course on differential equations; please send corrections,
suggestions and notes to courses@suchideas.com The author’s homepage for all courses may be
found on his website at SuchIdeas.com, which is where updated and corrected versions of these
notes can also be found.

The course materials are licensed under a permissive Creative Commons license: Attribution-
NonCommercial-ShareAlike 3.0 Unported (see the CC website for more details).

Thanks go to Professor G. Worster for allowing me to use his Differential Equations course
(Michaelmas 2009) as the basis for these notes.
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Prerequisites

A grasp of standard calculus (integration and differentiation).



1 Non-Rigorous Background

This course is about the study of differential equations, in which variables are investigated in terms
of rates of change (not just with respect to time). It is, obviously, an area of mathematics with many
direct applications to physics, including mechanics and so on. As such, it is important to have a grasp

of how we codify a physical problem; we introduce this with an example:

Proposition 1.1 (Newton’s Law of Cooling). If a body of temperature T (t) is placed in an environment

of temperature Ty then it will cool at a rate proportional to the difference in temperature.

Definition 1.2. A dependent variable is a variables considered as changing as a consequence of

changes in other variables, which are called independent variables.

In the example of Newton’s Law of Cooling, the dependent variable is the temperature T° which
depends upon the independent variable time, ¢. The standard (Leibniz) notation for differentiation

then gives us these equivalent forms for Newton’s Law:

dT

w < T-To
dT

= = —k(T-T
i k( 0)

where we take k to be a constant; in fact, we require the constant of proportionality k > 0 for actual
physical temperature exchanges.

Having established this basic approach, we shall begin with a fairly informal overview of differenti-
ation and integration, to help us understand the techniques we will develop later. For a fully rigorous

(axiomatic) approach to calculus, see the Analysis courses.

1.1 Differentiation using Big O and Little-o Notation

We define the rate of change of a function f (x) as being

ﬂ = lim
de hlao

fleth) - f(x)
h

which is pictorially equivalent to the gradient of f at x.
Note that the limit can be taken from above or below, written lim;,_,q+ W, with both side
limits being equal for differentiable functions. (Hence f (z) = |z| is not differentiable at « = 0.)

We use various notations, given f = f (z):

L=r@=(g)rwi=gf
d

where - is a differential operator. Then



df

1> We introduce another

To try and come up with a concise and useful way of writing f in terms of

notation (or two).

Definition 1.3. We write
f(z)=o0(g9(x))

as x — cif
lim f(z)

=0
z—e g (z)

and we say f is little-o of g (as x tends to c).

This definition allows us to make explicit what we mean by f ‘grows more slowly’ than g.

Example 1.4.

(i) x=o0(\/x)as z — 0T,

(ii) Inz = o(x) as ¢ — +o0.

Definition 1.5. We say that

as x — cif

is bounded as x — ¢, and we say f is big-O of g (as  tends to c).

This similarly gives a rigorous definition of what it means to say that g ‘grows at least as quickly’ as
/. Indeed, if f = 0(g) then it follows that f = O (g).

Example 1.6. 2”22_’” =0(1) as  — oo. Similarly, 222 — 2 = O (22 + 1) = O (2?).
x24+1

It follows that
df _Jla+h)=f@)  olh)

dx h h
the term on the right being referred to as the error term. (If we wrote it as e (h) = OTh) we would have
a function e such that + — 0 as h — 0.)

Thus
d
L= fen - r@ o

dx

and hence

af
dx

linear approximation

fx+h)= f(x)+h +o(h)
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