
Auerbach Publications

© 2001 CRC Press LLC

12/01

ENTERPRISE OPERATIONS MANAGEMENT

THE SSH PROTOCOL

Duncan Napier

I N S I D E

A Brief History of the Secure Shell Protocol and Its Implementations; How SSH Works;

Installation; Configuration; Using SSH

INTRODUCTION

SSH (Secure Shell) is a protocol for running secure network services over
an insecure network. The protocol serves as the basis for many imple-
mentations of SSH that are now widely available as commercial or non-
commercial products. These products encompass a wide variety of
platforms, including virtually all flavors of UNIX, DOS/Windows, and
Macintosh operating systems as well as many other environments, in-
cluding OpenVMS, BeOS, OS/2, PalmOS, and Java to name a few. SSH
runs on top of TCP/IP and is generally invisible to the software applica-
tions layer. As a result, SSH can be made completely transparent to end
users and does not require any additional user training.

The term “Secure Shell” originates from the early days of SSH in 1995,
when Tatu Ylönen, a researcher at Helsinki University of Technology,
wrote an application to facilitate secure, encrypted login access for UNIX
hosts. SSH was originally designed as a secure drop-in replacement for
rsh, UNIX remote shell, as well as remote login and file transfer applica-
tions such as telnet and rcp. These traditional UNIX services either by-
pass or offer limited user authentication (i.e., logon and password). They
are vulnerable to IP spoofing or DNS table manipulation because they of-
fer neither the means to authenticate the identity of hosts being logged
on to, nor that of the login client. They also pass all data — including lo-
gin names and passwords — in plaintext over connections that can be si-
lently hijacked. Plaintext data can be easily modified or corrupted in
transit without the knowledge of end users.

Conceptually, the SSH protocol
runs as an application on top of the
TCP/IP layer. The SSH protocol is im-
plemented through separate client
and server applications that authenti-
cate and negotiate protocols before

P A Y O F F I D E A

SSH (Secure Shell) is a protocol for authenticat-

ing, encrypting, and checking the integrity of in-

formation traversing TCP/IP-based networks.

This article describes SSH, how to install it, and

how to use it.

46-40-70

Auerbach Publications

© 2001 CRC Press LLC

12/01

deciding whether to establish a secure connection. The protocol pro-
vides for cryptographic host and user authentication, strong encryption,
integrity protection, and the simultaneous tunneling of multiple data
channels. These features lend themselves to more than just secure re-
mote logins. The feature set of SSH includes:

• Secure remote login
• Secure remote command execution
• Secure remote file transfer
• TCP port forwarding
• Cryptographic key control
• Authentication agents (including single sign-on)
• Configurable access control
• Data compression

Before discussing the above features in detail, it is useful to summa-
rize the history of the SSH protocol to understand some of the rationale
behind its design and its numerous implementations.

A BRIEF HISTORY OF THE SECURE SHELL PROTOCOL AND ITS IMPLEMENTATIONS

The first incarnation of the SSH protocol (known henceforth as SSH1)
was developed by Tatu Ylönen in 1995. SSH1 was released on the Inter-
net as free software with source code in July 1995. Ylönen documented
the software as an Internet Engineering Task Force (IETF) Internet Draft
that became the specification for the SSH1 protocol.

By the end of 1995, there were an estimated 20,000 users and Ylönen
started SSH Communications Security (http://www.ssh.com) to commer-
cially sell, support, and develop SSH. The freeware versions of SSH con-
tinued to be available, but SSH Communications Security imposed
restrictions on the terms of their use. In 1996, SSH Communications Se-
curity introduced a new version of the protocol, SSH2. The IETF founded
a public working group for standardization of the secure shell, SECSH, in
1996. By February 1997, the first Internet Draft for the SSH2 protocol was
completed. In 1998, SSH Communications Security released an SSH2 im-
plementation based on the SSH2 protocol.

The SSH2 protocol fixed some problems and shortcomings in SSH1
but these fixes rendered SSH2 incompatible with SSH1. SSH Communica-
tions Security also placed more restrictions of the use of its SSH2 product.
These limitations may explain why after all this time, SSH1 is still proba-
bly the more widely used protocol at the time of writing. SSH Communi-
cations Security has since removed some of the restrictions on its SSH2
product and there has also been a steady proliferation of free and Open
Source implementations that support both SSH1 and SSH2 protocols. An
indication that SSH is entering the public mainstream is the SSH function-
ality offered with many of the staple terminal emulation packages, both

Auerbach Publications

© 2001 CRC Press LLC

12/01

free (e.g., TeraTerm) and commercial (e.g., Van Dyke Secure CRT and
April Systems Anita).

The many free, Open Source, and commercial implementations of the
SSH1 and SSH2 protocols make it difficult to talk about the practical prop-
erties and features of SSH in general without biasing the discussion in the
direction of a particular implementation. While virtually all implementa-
tions are faithful to the fundamental features of the protocol and can be
made to interoperate smoothly, different implementations may have en-
hancements or idiosyncrasies that are unique to a particular product. In
addition to the obvious incompatibility between SSH1 and SSH2 proto-
cols, the author has found subtle and not-so-subtle problems, often relat-
ing to the interoperability of current products with many older releases.

To alleviate the problem in describing a fictitious “generic” implemen-
tation of the SSH protocols, the focus here is on the OpenSSH implemen-
tation of SSH. Open SSH is based on Björn Grönvall’s fix of Ylönen’s last
free version of SSH1 (release 1.2.12), which Grönvall named OSSH. By
early 2000, the OpenBSD (http://www.openbsd.org/) team had taken
over OSSH and renamed the project OpenSSH using Grönvall’s work.
OpenSSH has reached its current form through the work of Markus Friedl
and others.

The decision to use OpenSSH in this discussion is based on a number
of reasons, namely that OpenSSH:

• Has been ported to a wide variety of platforms encompassing all the
major UNIX flavors, Windows/DOS, MAC OS X, and others

• Is free and has no patented algorithms in its source tree
• Supports both SSH1 and SSH2 in a single, seamless package
• Derives its code base from the OpenBSD project, which has an al-

most unparalleled track record in the development of secure, stable,
and reliable software

• Releases tightly controlled upgrades on a regular and timely basis

OpenSSH is a work in progress and its feature list continues to grow with
each successive release.

HOW SSH WORKS

Exhibit 1 shows a conceptual schema of how SSH authentication and en-
cryption works. The actual details of the implementation may vary, de-
pending on the version of the protocol (SSH1 or SSH2), the specific
implementation involved, and the user’s choice of authentication proto-
cols. Essentially, the steps are as shown in Exhibit 1 and describe below.

Step 1

The client host (left) connects to the server host (right), conventionally
on TCP port 22. The server and client exchange the protocol versions

Auerbach Publications

© 2001 CRC Press LLC

12/01

they support and, if compatible, continue the connection. Otherwise, the
connection is terminated. The connection may be terminated if SSH1-
only and SSH2-only implementations are involved because the two pro-
tocols are incompatible. The connection at this stage is unencrypted but
uses check-bytes for integrity checking and plaintext-attack prevention
on top of the TCP connection to ensure that the connection is not at-
tacked or hijacked at this stage.

Step 2

The server sends its authentication information and session parameters to
the client. This includes the server host’s public key component of its
own public/private key pair, as well as a list of the encryption, compres-
sion, and authentication modes that the server supports. In SSH1, an ad-

EXHIBIT 1 — Steps through which SSH Initiates, Authenticates, and

Encrypts Communications

Server

Client

Server Public Key

Server Private Key

Client Host Public Key Library

Client connects to server on TCP Port 22.
1

Sender sends its public key(s) for proof of
identity and for client to encrypt session
information.

2

Client compares server public key to
corresponding public key for that server in
its public key library. Client then initiates
transmission of secret session key either by
1. Encrypting session key with server public

keys
2. Initiation of multi-party key-exchange

procedure (e.g., Diffie-Hellman)

3

Server turns on encryption and is ready to
receive client user and host authentication.

4

Client turns on encryption with session key
and further authentication (e.g., user
authentication through login password or
cryptographic key).

5

Full authentication of client is established
and access to server is enabled.

6

With server verified, client
now authenticates itself with

key or user password

Server sends public key

Secret session key transmitted

Encryption enabled

Auerbach Publications

© 2001 CRC Press LLC

12/01

ditional server key is sent. Public key algorithms supported by most SSH
implementations include RSA (Rivest-Shamir-Aldeman) and DSA (Digital
Signature Algorithm).

Step 3

The client host checks the server host’s public key against the client host’s
library of public keys. If this is the first time that this particular client and
this particular server host have connected over SSH, the user is asked to
verify the addition of new a server host public key to the client’s public
key library. Any future connections to that particular server host will now
be verified against that public key reported from their first contact. Once
the identity of the server is verified, a secret session key is generated.

In SSH1, the session key is encrypted with the server host public key
and the server host’s server public keys and sent back to the server host.
Because the encrypted session key can only be decrypted by the server
host’s private key, the secret session key can be safely transmitted over
the insecure link.

In SSH2, a multi-party key-exchange algorithm is used. Key-exchange
algorithms allow for a shared secret to be agreed to and then securely
transmitted between parties. The original and perhaps best-known key-
exchange algorithm is the Diffie-Hellman algorithm.

One might wonder why a secret session key is required when pub-
lic/private key pairs are available. The reason is that while many encryp-
tion methods use public key (or asymmetric) encryption, public key
encryption is much slower than symmetric encryption methods in which
all parties share a single, shared secret key. As a result, the secret key is
transmitted and kept secret using public key encryption, but the actual
scrambling of the data is done more speedily with the shared secret key
called the session key. Public keys also just happen to be ideal for au-
thentication and identification purposes. Secret key algorithms that SSH
supports include 3DES (triple Data Encryption Standard), IDEA (Interna-
tional Data Encryption Algorithm), and Blowfish.

Note that at this point, the communication is still unencrypted.

Step 4

Once the secret session key is in the possession of both parties, encryp-
tion and integrity checking are turned on.

SSH1 uses a single session key for each session. For improved securi-
ty, SSH2 can periodically change session keys, a process known as “re-
keying.” Session keys are typically stored only in memory and are not
written to storage for security purposes. SSH1 uses the weak CRC-32
(Cyclic Redundancy Check) method for checking data integrity. SSH2
uses cryptographically stronger MAC (Method Authentication Code) in-
tegrity checkers.

Click here to download full PDF material

https://www.computer-pdf.com/network/695-tutorial-the-ssh-protocol.html

