
Lecture 11: Prime Numbers And Discrete Logarithms

Lecture Notes on “Computer and Network Security”

by Avi Kak (kak@purdue.edu)

February 14, 2017

1:53pm

c©2017 Avinash Kak, Purdue University

Goals:

• Primality Testing

• Fermat’s Little Theorem

• The Totient of a Number

• The Miller-Rabin Probabilistic Algorithm for Testing for Primality

• Python and Perl Implementations for the Miller-Rabin Primal-
ity Test

• The AKS Deterministic Algorithm for Testing for Primality

• Chinese Remainder Theorem for Modular Arithmetic with Large Com-

posite Moduli

• Discrete Logarithms



CONTENTS

Section Title Page

11.1 Prime Numbers 3

11.2 Fermat’s Little Theorem 5

11.3 Euler’s Totient Function 12

11.4 Euler’s Theorem 15

11.5 Miller-Rabin Algorithm for Primality Testing 18

11.5.1 Miller-Rabin Algorithm is Based on an Intuitive Decomposition of 20

an Even Number into Odd and Even Parts

11.5.2 Miller-Rabin Algorithm Uses the Fact that x2 = 1 Has No 21

Non-Trivial Roots in Zp

11.5.3 Miller-Rabin Algorithm: Two Special Conditions That Must Be 24

Satisfied By a Prime

11.5.4 Consequences of the Success and Failure of One or Both Conditions 28

11.5.5 Python and Perl Implementations of the Miller-Rabin 29

Algorithm

11.5.6 Miller-Rabin Algorithm: Liars and Witnesses 38

11.5.7 Computational Complexity of the Miller-Rabin Algorithm 40

11.6 The Agrawal-Kayal-Saxena (AKS) Algorithm 43

for Primality Testing

11.6.1 Generalization of Fermat’s Little Theorem to Polynomial Rings 45

Over Finite Fields

11.6.2 The AKS Algorithm: The Computational Steps 50

11.6.3 Computational Complexity of the AKS Algorithm 52

11.7 The Chinese Remainder Theorem 53

11.7.1 A Demonstration of the Usefulness of CRT 57

11.8 Discrete Logarithms 60

11.9 Homework Problems 64



Computer and Network Security by Avi Kak Lecture 11

11.1: PRIME NUMBERS

• Prime numbers are extremely important to computer

security. As you will see in the next lecture, public-key cryp-

tography would not be possible without prime numbers.

• As stated in Lecture 12, an important concern in public-key cryp-

tography is to test a randomly selected integer for its primality.

That is, we first generate a random number and then try to figure

out whether it is prime.

• An integer is prime if it has exactly two distinct divisors, the

integer 1 and itself. That makes the integer 2 the first prime.

• We will also be very interested in two integers being relatively

prime to each other. Such integers are also called coprimes.

Two integers m and n are coprimes if and only if their Greatest

Common Divisor is equal to 1. That is if gcd(m,n) = 1.

Therefore, whereas 4 and 9 are coprimes, 6 and 9 are not. [See

Lecture 5 for gcd.]

3



Computer and Network Security by Avi Kak Lecture 11

• Much of the discussion in this lecture uses the notion of co-

primes, as defined above. The same concept used in earlier

lectures was referred to as relatively prime. But as men-

tioned above, the two mean the same thing.

• Obviously, the number 1 is coprime to every integer.

4



Computer and Network Security by Avi Kak Lecture 11

11.2: FERMAT’S LITTLE THEOREM

• Our main concern in this lecture is with testing a randomly gen-

erated integer for its primality. As you will see in Section 11.5,

the test that is computationally efficient is based directly on Fer-

mat’s Little Theorem. [This theorem also plays an important role in the

derivation of the famous RSA algorithm for public-key cryptography that is presented

in Section 12.2.3 of Lecture 12. Yet another application of this theorem will be in the

speedup of the modular exponentiation algorithm that is presented in Section 12.5 of

Lecture 12.]

• The theorem states that if p is a prime number, then for

every integer a the following must be true

ap ≡ a (mod p) (1)

Another way of saying the same thing is that for any prime p and

any integer a, ap − a will always be divisible by p. [Review the notation

of modular arithmetic in Lecture 5 to fully understand what this theorem is saying. As stated in that

lecture, ap ≡ a (mod p) means that ap mod p = a mod p. For example, 83 ≡ 8 (mod 3) since

83 mod 3 = 2 and, at the same time, 8 mod 3 = 2.]

5



Click here to download full PDF material

https://www.computer-pdf.com/security/715-tutorial-prime-numbers-and-discrete-logarithms.html

