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Goals:

• Primality Testing

• Fermat’s Little Theorem

• The Totient of a Number

• The Miller-Rabin Probabilistic Algorithm for Testing for Primality

• Python and Perl Implementations for the Miller-Rabin Primal-
ity Test

• The AKS Deterministic Algorithm for Testing for Primality

• Chinese Remainder Theorem for Modular Arithmetic with Large Com-

posite Moduli

• Discrete Logarithms
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11.1: PRIME NUMBERS

• Prime numbers are extremely important to computer

security. As you will see in the next lecture, public-key cryp-

tography would not be possible without prime numbers.

• As stated in Lecture 12, an important concern in public-key cryp-

tography is to test a randomly selected integer for its primality.

That is, we first generate a random number and then try to figure

out whether it is prime.

• An integer is prime if it has exactly two distinct divisors, the

integer 1 and itself. That makes the integer 2 the first prime.

• We will also be very interested in two integers being relatively

prime to each other. Such integers are also called coprimes.

Two integers m and n are coprimes if and only if their Greatest

Common Divisor is equal to 1. That is if gcd(m,n) = 1.

Therefore, whereas 4 and 9 are coprimes, 6 and 9 are not. [See

Lecture 5 for gcd.]
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• Much of the discussion in this lecture uses the notion of co-

primes, as defined above. The same concept used in earlier

lectures was referred to as relatively prime. But as men-

tioned above, the two mean the same thing.

• Obviously, the number 1 is coprime to every integer.
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11.2: FERMAT’S LITTLE THEOREM

• Our main concern in this lecture is with testing a randomly gen-

erated integer for its primality. As you will see in Section 11.5,

the test that is computationally efficient is based directly on Fer-

mat’s Little Theorem. [This theorem also plays an important role in the

derivation of the famous RSA algorithm for public-key cryptography that is presented

in Section 12.2.3 of Lecture 12. Yet another application of this theorem will be in the

speedup of the modular exponentiation algorithm that is presented in Section 12.5 of

Lecture 12.]

• The theorem states that if p is a prime number, then for

every integer a the following must be true

ap ≡ a (mod p) (1)

Another way of saying the same thing is that for any prime p and

any integer a, ap − a will always be divisible by p. [Review the notation

of modular arithmetic in Lecture 5 to fully understand what this theorem is saying. As stated in that

lecture, ap ≡ a (mod p) means that ap mod p = a mod p. For example, 83 ≡ 8 (mod 3) since

83 mod 3 = 2 and, at the same time, 8 mod 3 = 2.]
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