
Lecture 15: Hashing for Message Authentication

Lecture Notes on “Computer and Network Security”

by Avi Kak (kak@purdue.edu)

March 29, 2017

1:30am

c©2017 Avinash Kak, Purdue University

Goals:

• What is a hash function?

• Different ways to use hashing for message authentication

• The birthday paradox and the birthday attack

• Structure of cryptographically secure hash functions

• SHA Series of Hash Functions

• Compact Python and Perl implementations for SHA-1 using
BitVector [Although SHA-1 is now considered to be fully broken (see Section 15.7.1), program-

ming it is still a good exercise if you are learning how to code Merkle type hash functions.]

• Message Authentication Codes

CONTENTS

Section Title Page

15.1 What is a Hash Function? 3

15.2 Different Ways to Use Hashing for Message 6
Authentication

15.3 When is a Hash Function Secure? 11

15.4 Simple Hash Functions 13

15.5 What Does Probability Theory Have to Say 17
About a Randomly Produced Message Having
a Particular Hash Value

15.5.1 What is the Probability That There Exist At 21
Least Two Messages With the Same Hashcode?

15.6 The Birthday Attack 29

15.7 Structure of Cryptographically Secure Hash 33
Functions

15.7.1 The SHA Family of Hash Functions 36

15.7.2 The SHA-512 Secure Hash Algorithm 40

15.7.3 Compact Python and Perl Implementations 49
for SHA-1 Using BitVector

15.8 Hash Functions for Computing Message 59
Authentication Codes

15.9 Hash Functions for Efficient Storage of Associative 65
Arrays

15.10 Homework Problems 72

Computer and Network Security by Avi Kak Lecture 15

15.1: WHAT IS A HASH FUNCTION?

• In the context of message authentication, a hash function takes a

variable sized input message and produces a fixed-sized

output. The output is usually referred to as the hashcode

or the hash value or the message digest. [Hash functions are also

extremely important for creating efficient storage structures for associative arrays in the memory of a

computer. (As to what is meant by an “associative array”, think of a telephone directory that consists

of <name,number> pairs.) Those types of hash functions also play a central role in many modern

big-data processing algorithms. For example, in the MapReduce framework used in Hadoop, a hash

function is applied to the “keys’ related to the Map tasks in order to determine their bucket addresses,

with each bucket constituting a Reduce task. In this lecture, the notion of a hash function for efficient

storage is briefly reviewed in Section 15.9.]

• For example, the SHA-512 hash function takes for input mes-

sages of length up to 2128 bits and produces as output a 512-bit

message digest (MD). SHA stands for Secure Hash Al-

gorithm. [A series of SHA algorithms has been developed by the National

Institute of Standards and Technology and published as Federal Information Process-

ing Standards (FIPS).]

• We can think of the hashcode (or the message digest) as a fixed-

3

Computer and Network Security by Avi Kak Lecture 15

sized fingerprint of a variable-sized message.

• Message digests produced by the most commonly used hash func-

tions range in length from 160 to 512 bits depending on the al-

gorithm used.

• Since a message digest depends on all the bits in the input mes-

sage, any alteration of the input message during transmission

would cause its message digest to not match with its original

message digest. This can be used to check for forgeries, unautho-

rized alterations, etc. To see the change in the hashcode produced

by an innocuous (practically invisible) change in a message, here

is an example:

Message: "The quick brown fox jumps over the lazy dog"

SHA1 hashcode: 2fd4e1c67a2d28fced849ee1bb76e7391b93eb12

Message: "The quick brown fox jumps over the lazy dog"

SHA1 hashcode: 8de49570b9d941fb26045fa1f5595005eb5f3cf2

The only difference between the two messages shown above is the

extra space between the words “brown” and “fox” in the second

message. Notice how completely different the hashcodes look.

SHA-1 produces a 160 bit hashcode. It takes 40 hex characters

to show the code in hex.

• The two hashcodes (or, message digests, if you would rather call

them that) shown above were produced by the following Perl

4

Computer and Network Security by Avi Kak Lecture 15

script:

#!/usr/bin/perl -w

use Digest::SHA1;

my $hasher = Digest::SHA1->new();

$hasher->add("The quick brown fox jumps over the lazy dog");

print $hasher->hexdigest;

print "\n";

$hasher->add("The quick brown fox jumps over the lazy dog");

print $hasher->hexdigest;

print "\n";

As the script shows, this uses the SHA-1 algorithm for creating

the message digest. [I downloaded the module Digest-SHA1 directly from http://search.cpan.

org/. When I tried to do the same by downloading the libraries libdigest-perl and libdigest-sha-perl

through the Synaptic Package Manager on my Ubuntu laptop, it did not work for me.]

• Perl’s Digest module, used in the script shown above, can be

used to invoke any of over fifteen different hash algorithms. The

module can output the hashcode in either binary format, or in

hex format, or a binary string output as in the form of aBase64-

encoded string. A similar functionality in Python is provided by

the hashlib library. Both the Digest module for Perl and the

hashlib library for Python come with the standard distribution

of the two languages.

5

Click here to download full PDF material

https://www.computer-pdf.com/security/718-tutorial-hashing-for-message-authentication.html

