
Lecture 18: Packet Filtering Firewalls (Linux)

Lecture Notes on “Computer and Network Security”

by Avi Kak (kak@purdue.edu)

March 20, 2017

11:49pm

c©2017 Avinash Kak, Purdue University

Goals:

• Packet-filtering vs. proxy-server firewalls

• The four packet-filtering tables supported by iptables: filter, nat, man-
gle, and raw

• Creating and installing new firewall rules

• Structure of the filter table

• Connection tracking and extension modules

• Designing your own packet filtering firewall



CONTENTS

Section Title Page

18.1 Firewalls in General 3

18.2 A “Demo” to Motivate You to Use Iptables 7

18.3 The Four Tables Maintained by the 16

Linux Kernel for Packet Processing

18.4 How the Packets are Processed by the 19

filter Table

18.5 To See if iptables is Installed and 22

Running

18.6 Structure of the filter Table 25

18.7 Structure of the nat Table 33

18.8 Structure of the mangle Table 36

18.9 Structure of the raw Table 38

18.10 What about the fact that the different 39

tables contain similarly named chains?

18.11 How the Tables are Actually Created 40

18.12 Connection Tracking by iptables 49

and the Extension Modules

18.13 Using iptables for Port Forwarding 54

18.14 Using Logging with iptables 56

18.15 Saving and Restoring Your Firewall 58

18.16 A Case Study: Designing iptables for a New LAN 63

18.17 Homework Problems 67

2



Computer and Network Security by Avi Kak Lecture 18

18.1: FIREWALLS IN GENERAL

• Two primary types of firewalls are

– packet filtering firewalls

– proxy-server firewalls

Sometimes both are employed to protect a network. A single

computer may serve both roles.

• With a proxy-server based firewall, all network traffic in a host

is routed through the proxy server. That allows the proxy server

to exercise access control over the traffic in ways that will be

explained in Lecture 19.

• Packet filtering firewalls, on the other hand, take advantage of

the fact that direct support for TCP/IP is built into the kernels

of all major operating systems now. When a kernel is mono-

lithic, TCP/IP is usually internal to the kernel, meaning that it

is executed in the same address space in which the kernel itself

is executed (even when such a capability is made available to the

kernel in the form of a module that is loaded at run time). [In

addition to scheduling processes and threads, one of the main jobs of an OS is to serve as the interface between

3



Computer and Network Security by Avi Kak Lecture 18

user programs, on the one hand, and the hardware (CPU, memory, disk, network interfaces, etc.), on the other.

The core part of an OS is usually referred to as its kernel. Unless you are using highly specialized hardware,

access by a user program to the hardware in a general-purpose computing platform must go through the kernel.

By the same token, any new data made available by the hardware in such general-purpose machines is likely

to be seen first by the kernel. Therefore, when a new data packet becomes available at a network interface,

the kernel is in a position to immediately determine its fate — provided the kernel has the TCP/IP capability

built into it. Just imagine how much slower it would be if a packet coming off a network interface had to be

handed over by the kernel to a user-level process for its processing. Kernel-level packet filtering is particularly

efficient in Linux because of the monolithic nature of the kernel. Linux is monolithic despite the fact that much

of its capability these days comes in the form of loadable kernel modules. In general, a kernel is monolithic

when its interaction with the hardware takes place in the same address space in which the kernel itself is being

executed. (The “loadable kernel modules” of Linux that you can see with a command like lsmod are executed

in the same address space as the kernel itself.) The opposite of a monolithic kernel is a microkernel in which

the interaction with the hardware is delegated to different user-level processes (and, thus, is subject to address-

space translations required for process execution). Recall that each process comes with its own address space

that must be translated into actual memory addresses when the process is executed. For a very fascinating

discussion on monolithic kernels vs. microkernels at the dawn of the Linux movement (in the early 90s), see

http://oreilly.com/catalog/opensources/book/appa.html. This discussion involves Linus Torvalds, the

prophet of Linux, and Andrew Tanenbaum, the high-priest of operating systems in general. Even though this

discussion is now over 20 years old, much of what you’ll find there remains relevant today.]

• In Linux, a packet filtering firewall is configured with the Iptables

modules. For doing the same thing in a Windows machine, I

believe the best you can do is to use the graphical interfaces

provided through the Control Panel. It may also be possible to

use the WFP APIs (Windows Filtering Platform) for embedding

packet filtering in user-created applications, but I am not entirely

4



Computer and Network Security by Avi Kak Lecture 18

certain about that — especially with regard to packet filtering in

the more recent versions of the Windows platform.

• The iptables tool inserts and deletes rules from the kernel’s

packet filtering table. Ordinarily, these rules created by the

iptables command would be lost on reboot. However, you can

make the rules permanent with the commands iptables-save and

iptables-restore. The other way is to put the commands re-

quired to set up your rules in an initialization script.

• Rusty Russell of the Netfilter Core Team is the author of iptables.

He is also the author of ipchains that was incorporated in version

2.2 of the kernel and that was replaced by iptables in version 2.4.

• The latest packet filtering framework in Linux is known as nftables.

Meant as a more modern replacement for iptables, nftables

was merged into the Linux kernel mainline on January 19, 2014.

nftableswas developed to address the main shortcoming of iptables,

which is that its packet filtering code is much too protocol spe-

cific (specific at the level of IPv4 vs. IPv6 vs. ARP, etc.). This

results in code replication when firewall engines are created with

iptables.

• Despite its many advantages over iptables, there has not yet

been a wholesale switchover from iptables to nftables — proba-

bly because there do not yet exist tools capable of automatically

5



Click here to download full PDF material

https://www.computer-pdf.com/security/721-tutorial-packet-filtering-firewalls-linux.html

