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Goals:

• To review modular arithmetic

• To present Euclid’s GCD algorithms

• To present the prime finite field Zp

• To show how Euclid’s GCD algorithm can be extended to find multiplica-
tive inverses

• Perl and Python implementations for calculating GCD and mul-

tiplicative inverses
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5.1: MODULAR ARITHMETIC
NOTATION

• Given any integer a and a positive integer n, and given a di-

vision of a by n that leaves the remainder between 0 and n− 1,

both inclusive, we define

a mod n

to be the remainder. Note that the remainder must be

between 0 and n−1, both ends inclusive, even if that means that

we must use a negative quotient when dividing a by n.

• We will call two integers a and b to be congruent modulo n

if

a mod n = b mod n

• Symbolically, we will express such a congruence by

a ≡ b (mod n)
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• Informally, a congruence may also be displayed as:

a = b (mod n)

and even

a = b mod n

as long as it is understood that we are talking about a and b

being equal only in the sense that their remainders obtained by

subjecting them to modulo n division are exactly the same.

• We say a non-zero integer a is a divisor of another integer b

provided the remainder is zero when we divide b by a. That is,

when b = ma for some integer m.

• When a is a divisor of b, we express this fact by a | b.
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5.1.1: Examples of Congruences

• Here are some congruences modulo 3:

7 ≡ 1 (mod 3)

−8 ≡ 1 (mod 3)

−2 ≡ 1 (mod 3)

7 ≡ − 8 (mod 3)

−2 ≡ 7 (mod 3)

• One way of seeing the above congruences (for mod 3 arithmetic):

... 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 ...

...- 9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 ...

where the top line is the output of modulo 3 arithmetic and

the bottom line the set of all integers. [The top entry in each column is the

modulo 3 value of the bottom entry in the same column. Pause for a moment and think about the fact that

whereas (7 mod 3) = 1 on the positive side of the integers, on the negative side we have (−7 mod 3) = 2.]

• As you can see, the modulo n arithmetic maps all integers into

the set {0, 1, 2, 3, ...., n− 1}.
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