Lecture 6: Finite Fields (PART 3)

PART 3: Polynomial Arithmetic

Theoretical Underpinnings of Modern Cryptography

Lecture Notes on "Computer and Network Security"

by Avi Kak (kak@purdue.edu)

January 26, 2017 3:31pm

O2017 Avinash Kak, Purdue University

Goals:

- To review polynomial arithmetic
- Polynomial arithmetic when the coefficients are drawn from a finite field
- The concept of an irreducible polynomial
- Polynomials over the GF(2) finite field

CONTENTS

	Section Title	Page
6.1	Polynomial Arithmetic	3
6.2	Arithmetic Operations on Polynomials	5
6.3	Dividing One Polynomial by Another Using Long Division	7
6.4	Arithmetic Operations on Polynomial Whose Coefficients Belong to a Finite Field	9
6.5	Dividing Polynomials Defined over a Finite Field	11
6.6	Let's Now Consider Polynomials Defined over $GF(2)$	13
6.7	Arithmetic Operations on Polynomials over $GF(2)$	15
6.8	So What Sort of Questions Does Polynomial Arithmetic Address?	17
6.9	Polynomials over a Finite Field Constitute a Ring	18
6.10	When is Polynomial Division Permitted?	20
6.11	Irreducible Polynomials, Prime Polynomials	22
6.12	Homework Problems	23

6.1: POLYNOMIAL ARITHMETIC

- Why study polynomial arithmetic? As you will see in the next lecture, defining finite fields over sets of polynomials will allow us to create a finite set of numbers that are particularly appropriate for digital computation. Since these numbers will constitute a finite field, we will be able to carry out all arithmetic operations on them in particular the operation of division without error.
- A polynomial is an expression of the form

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

for some non-negative integer n and where the **coefficients** a_0 , a_1, \ldots, a_n are drawn from some designated set S. S is called the **coefficient set**.

- When $a_n \neq 0$, we have a polynomial of degree n.
- A zeroth-degree polynomial is called a constant polynomial.

- **Polynomial arithmetic** deals with the addition, subtraction, multiplication, and division of polynomials.
- Note that we have **no interest in evaluating the value of a polynomial** for a specific value of the variable x.

6.2: ARITHMETIC OPERATIONS ON POLYNOMIALS

• We can add two polynomials:

$$f(x) = a_2 x^2 + a_1 x + a_0$$

$$g(x) = b_1 x + b_0$$

$$f(x) + g(x) = a_2 x^2 + (a_1 + b_1) x + (a_0 + b_0)$$

• We can subtract two polynomials:

$$f(x) = a_2 x^2 + a_1 x + a_0$$

$$g(x) = b_3 x^3 + b_0$$

$$f(x) - g(x) = -b_3 x^3 + a_2 x^2 + a_1 x + (a_0 - b_0)$$

• We can multiply two polynomials:

$$f(x) = a_2 x^2 + a_1 x + a_0$$

$$g(x) = b_1 x + b_0$$

$$f(x) \times g(x) = a_2 b_1 x^3 + (a_2 b_0 + a_1 b_1) x^2 + (a_1 b_0 + a_0 b_1) x + a_0 b_0$$

Click here to download full PDF material