Lecture 7: Finite Fields (PART 4)

PART 4: Finite Fields of the Form $GF(2^n)$

Theoretical Underpinnings of Modern Cryptography

Lecture Notes on "Computer and Network Security"

by Avi Kak (kak@purdue.edu)

January 28, 2017 4:08pm

O2017 Avinash Kak, Purdue University

Goals:

- To review finite fields of the form $GF(2^n)$
- To show how arithmetic operations can be carried out by directly operating on the bit patterns for the elements of $GF(2^n)$
- Perl and Python implementations for arithmetic in a Galois Field using my BitVector modules

CONTENTS

	Section Title	Page
7.1	Consider Again the Polynomials over $GF(2)$	3
7.2	Modular Polynomial Arithmetic	5
7.3	How Large is the Set of Polynomials When Multiplications are Carried Out Modulo $x^2 + x + 1$	8
7.4	How Do We Know that $GF(2^3)$ is a Finite Field?	10
7.5	$GF(2^n)$ a Finite Field for Every n	14
7.6	Representing the Individual Polynomials in $GF(2^n)$ by Binary Code Words	15
7.7	Some Observations on Bit-Pattern Additions in $GF(2^n)$	18
7.8	Some Observations on Arithmetic Multiplication in $GF(2^n)$	20
7.9	Direct Bitwise Operations for Multiplication in $GF(2^8)$	22
7.10	Summary of How a Multiplication is Carried Out in $GF(2^8)$	25
7.11	Finding Multiplicative Inverses in $GF(2^n)$ with Implementations in Perl and Python	27
7.12	Using a Generator to Represent the Elements of $GF(2^n)$	35
7.13	Homework Problems	39

7.1: CONSIDER AGAIN THE POLYNOMIALS OVER GF(2)

• Recall from Lecture 6 that GF(2) is a finite field consisting of the set $\{0, 1\}$, with modulo 2 addition as the group operator and modulo 2 multiplication as the ring operator. In Section 6.7 of Lecture 6, we also talked about polynomials over GF(2). Along the lines of the examples shown there, here are some more:

$$x + 1
x2 + x + 1
x2 + 1
x3 + 1
x
1
x5
x10000
...
...$$

The examples shown only use 0 and 1 for the coefficients in the polynomials. Obviously, we could also have shown polynomials with negative coefficients. However, as you'd recall from Lecture 6, -1 is the same as +1 in GF(2). [Does $23 * x^5 + 1$ belong to the set of polynomials

3

Lecture 7

defined over GF(2)? How about $-3 * x^7 + 1$? The answer to both questions is yes. Can you justify the answer?

- Obviously, the number of such polynomials is infinite.
- The polynomials can be subject to the algebraic operations of addition and multiplication in which the coefficients are added and multiplied according to the rules that apply to GF(2).
- As stated in the previous lecture, the set of such polynomials forms a **ring**, called the **polynomial ring**.

7.2: MODULAR POLYNOMIAL ARITHMETIC

Let's now add one more twist to the algebraic operations we carry out on all the polynomials over GF(2):

• In Section 6.11 of Lecture 6, I defined an **irreducible polynomial** as a polynomial that cannot be factorized into lower-degree polynomials. From the set of **all** polynomials that can be defined over GF(2), let's now consider the following *irreducible polynomial*:

 $x^3 + x + 1$

By the way there exist **only two** irreducible polynomials of degree 3 over GF(2). The other is $x^3 + x^2 + 1$.

- For the set of **all** polynomials over GF(2), let's now consider polynomial arithmetic modulo the irreducible polynomial $x^3 + x + 1$.
- To explain what I mean by polynomial arithmetic modulo the irreduciable polynomial, when an algebraic operation we are

Click here to download full PDF material