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Goals:

• To review finite fields of the form GF (2n)

• To show how arithmetic operations can be carried out by directly

operating on the bit patterns for the elements of GF (2n)

• Perl and Python implementations for arithmetic in a

Galois Field using my BitVector modules
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7.1: CONSIDER AGAIN THE
POLYNOMIALS OVER GF (2)

• Recall from Lecture 6 that GF (2) is a finite field consisting of

the set {0, 1}, with modulo 2 addition as the group operator and

modulo 2 multiplication as the ring operator. In Section 6.7 of

Lecture 6, we also talked about polynomials over GF (2). Along

the lines of the examples shown there, here are some more:

x + 1

x2 + x + 1

x2 + 1

x3 + 1

x

1

x5

x10000

...

...

The examples shown only use 0 and 1 for the coefficients in the

polynomials. Obviously, we could also have shown polynomials

with negative coefficients. However, as you’d recall from Lecture

6, -1 is the same as +1 in GF (2). [Does 23 ∗ x5 + 1 belong to the set of polynomials
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defined over GF (2)? How about − 3 ∗ x
7 + 1? The answer to both questions is yes. Can you justify the

answer?]

• Obviously, the number of such polynomials is infinite.

• The polynomials can be subject to the algebraic operations of

addition and multiplication in which the coefficients are added

and multiplied according to the rules that apply to GF (2).

• As stated in the previous lecture, the set of such polynomials

forms a ring, called the polynomial ring.
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7.2: MODULAR POLYNOMIAL
ARITHMETIC

Let’s now add one more twist to the algebraic operations we carry

out on all the polynomials over GF (2):

• In Section 6.11 of Lecture 6, I defined an irreducible polyno-

mial as a polynomial that cannot be factorized into lower-degree

polynomials. From the set of all polynomials that can be defined

over GF (2), let’s now consider the following irreducible polyno-

mial:

x3 + x + 1

By the way there exist only two irreducible polynomials of de-

gree 3 over GF (2). The other is x3 + x2 + 1.

• For the set of all polynomials over GF (2), let’s now consider

polynomial arithmetic modulo the irreducible polynomial x3 + x+ 1.

• To explain what I mean by polynomial arithmetic modulo the

irreduciable polynomial, when an algebraic operation — we are
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