
Lecture 23: Port and Vulnerability Scanning, Packet

Sniffing, Intrusion Detection, and Penetration Testing

Lecture Notes on “Computer and Network Security”

by Avi Kak (kak@purdue.edu)

April 17, 2017
12:20am

c©2017 Avinash Kak, Purdue University

Goals:
• Port scanners

• The nmap port scanner

• Vulnerability scanners

• The Nessus vulnerability scanner

• Packet sniffers

• Intrusion detection

• The Metasploit Framework

• The Netcat utility



CONTENTS

Section Title Page

23.1 Port Scanning 3

23.1.1 Port Scanning with Calls to connect() 5

23.1.2 Port Scanning with TCP SYN Packets 7

23.1.3 The nmap Port Scanner 9

23.2 Vulnerability Scanning 15

23.2.1 The Nessus Vulnerability Scanner 16

23.2.2 Installing Nessus 19

23.2.3 About the nessus Client 23

23.3 Packet Sniffing 24

23.3.1 Packet Sniffing with tcpdump 30

23.3.2 Packet Sniffing with wireshark 32

23.4 Intrusion Detection with snort 35

23.5 Penetration Testing and Developing New 45

Exploits with the Metasploit Framework

23.6 The Extremely Versatile Netcat Utility 50

23.7 Homework Problems 58



Computer and Network Security by Avi Kak Lecture 23

23.1: PORT SCANNING

• See Section 21.1 of Lecture 21 for the mapping between the ports

and many of the standard and non-standard services. As men-

tioned there, each service provided by a computer monitors a

specific port for incoming connection requests. There are 65,535

different possible ports on a machine.

• The main goal of port scanning is to find out which ports are

open, which are closed, and which are filtered.

• Looking at your machine from the outside, a given port on your

machine is open if you are running a server program on the

machine and the port is assigned to the server. If you are not

running any server programs, then, from the outside, no ports on

your machine are open. This would ordinarily be the case with

a brand new laptop that is not meant to provide any services to

the rest of the world. But, even with a laptop that was “clean”

originally, should you happen to click accidently on an email at-

tachment consisting of malware, you could inadvertently end up

installing a server program in your machine.

3



Computer and Network Security by Avi Kak Lecture 23

• When we say a port is filtered, what we mean is that the packets

passing through that port are subject to the filtering rules of a

firewall.

• If a port on a remote host is open for incoming connection re-

quests and you send it a SYN packet, the remote host will respond

back with a SYN+ACK packet (see Lecture 16 for a discussion

of this).

• If a port on a remote host is closed and your computer sends

it a SYN packet, the remote host will respond back with a RST

packet (see Lecture 16 for a discussion of this).

• Let’s say a port on a remote host is filtered with something

like an iptables based packet filter (see Lecture 18) and your

scanner sends it a SYN packet or an ICMP ping packet, you may

not get back anything at all.

• A frequent goal of port scanning is to find out if a remote host

is providing a service that is vulnerable to buffer overflow attack

(see Lecture 21 for this attack).

• Port scanning may involve all of the 65,535 ports or only the ports

that are well-known to provide services vulnerable to different

security-related exploits.

4



Computer and Network Security by Avi Kak Lecture 23

23.1.1: Port Scanning with Calls to connect()

• The simplest type of a scan is made with a call to connect().

The manpage for this system call on Unix/Linux systems has the

following prototype for this function:

#include <sys/socket.h>

int connect(int socketfd, const struct sockaddr *address, socklen_t address_len);

where the parameter socketfd is the file descriptor associated

with the internet socket constructed by the client (with a call to

three-argument socket()), the pointer parameter address that

points to a sockaddr structure that contains the IP address of

the remote server, and the parameter address_len that specifies

the length of the structure pointed to by the second argument.

• A call to connect() if successful completes a three-way hand-

shake (that was described in Lecture 16) for a TCP connection

with a server. The header file sys/socket.h includes a number

of definitions of structs needed for socket programming in C.

• When connect() is successful, it returns the integer 0, otherwise

it returns -1.

5



Click here to download full PDF material

https://www.computer-pdf.com/security/729-tutorial-port-and-vulnerability-scanning-packet-sniffing-intrusion-detection-and-penetration-testing.html

