Lecture 27: Web Security: PHP Exploits, SQL
Injection, and the Slowloris Attack

Lecture Notes on “Computer and Network Security”

by Avi Kak (kak@purdue.edu)

April 15, 2017
8:15am

(©2017 Avinash Kak, Purdue University

Goals:

e What do we mean by web security?

e PHP and its system program execution functions

e An example of a PHP exploit that spews out third-party spam
e MySQL with row-level security

e SQL Injection Attack

e The Slowloris Attack

e Protecting your web server with mod-security

CONTENTS

Section Title Page
27.1 | What Do We Mean by Web 3
Security?
27.2 | PHP’s System Program Execution 9
Functions
27.3 | A Contrived PHP Exploit to Spew 13
Out Spam
27.4 | MySQL with Row-Level Security 27
27.5 | PHP + SQL 44
27.6 | SQL Injection Attack 50
27.7 | The Slowloris Attack on Web Servers| 54
27.8 | Protecting Your Web Server with 64

mod-security

omputer and Network Security by Avi Kak Lecture 27

27.1: WHAT DO WE MEAN BY WEB
SECURITY?

e Obviously, practically all of the security-related fundamental no-
tions we have covered so far are relevant to many of our activities
on the web. Where would web commerce be today without the

confidentiality and authentication services provided by protocols
such as TLS/SSL, SSH, etc?

e But web security goes beyond the concerns that have been pre-
sented so far. Web security addresses the issues that
are specific to how web servers present their content
to web browsers, how the browsers interact with the
servers, and how people interact with the browsers.
This lecture takes up some of these issues.

e Until about a decade ago, the web servers offered only static
content. This content resided in disk files and security consisted
primarily of restricting access to those files.

e Bow now web servers create content dynamically. Newspaper
pages and the pages offered by e-commerce folks may, for ex-

3

Com,

puter and Network Security by Avi Kak Lecture 27

ample, alter the advertisements in their content depending on
what they can guess about the geographical location and per-
sonal preferences of the visitor. Dynamically created content is
also widely used for creating wikis, in serving out blog pages with
user feedback, in web-hosting services, etc.

Dynamic content creation frequently requires that the web server
be connected to a database server; the information that is dished
out dynamically is placed in the database server. This obviously
requires some sort of middleware that can analyze the URL re-
ceived from a visitor’s browser and any other available informa-
tion on the visitor, decide what to fetch from the database for
the request at hand, and then compose a web page to be sent
back to the visitor. These days this “middleware” fre-
quently consists of PHP scripts, especially if the web
server platform is composed of open-source compo-

nents, such as Apache for the web server itself and
MySQL as the database backend.

Although the issues that we describe in the rest of this lecture ap-
ply specifically to the Apache+PHP+MySQL combination, simi-
lar issues arise in web server systems that are based on Microsoft
products. What is accomplished by PHP for the case of open-
source platforms is done by ASP for web servers based on Mi-
crosoft products.

Computer and Network Security by Avi Kak Lecture 27

e For the demonstrations in this lecture, I will make the following
assumptions:

— That you have the Apache2 web server installed on your Ubuntu
machine. The installation of Apache2 was addressed earlier in Section
19.4.2 of Lecture 19. In what follows, I will add to the Apache-related
comments made earlier in Lecture 19.

— That your Apache2 server is PHP7 (PHP version 7) enabled. That
you can ensure that through the following three steps:

1. Enter the following two directives at the bottom of your /etc/apache2/apache2.conf
file:

<FilesMatch "\.php$">
SetHandler application/x-httpd-php
</FilesMatch>

<FilesMatch "\.html$">
SetHandler application/x-httpd-php
</FilesMatch>

The first of these two directives tells the HT'TPD server that should there be a
browser request for a document whose name carries the “php” suffix, that doc-
ument must first go through PHP preprocessing and only the output produced
by the preprocessor should be sent to the browser. The second directive applies
the same rule to browser requests for HTML documents — a rule that needs
to be enforced when the web pages (in HTML) hosted by the server contain
embedded PHP code.

2. You’d need to add the Apache module php7.0 to the set of modules that you
see in the directory /etc/apache2/mods-avaialble/. This you can do by
the following install command:

sudo apt-get install libapache2-mod-php7.0

Click here to download full PDF material

https://www.computer-pdf.com/security/731-tutorial-web-security-php-exploits-sql-injection-and-the-slowloris-attack.html

